正负电子应用 北京正负电子对撞机国家实验室探寻粒子的奇妙世界

小编 2025-03-09 电子头条 23 0

北京正负电子对撞机国家实验室探寻粒子的奇妙世界

北京正负电子对撞机的正负电子输运线。 (资料图片)

在高能物理研究领域,BEPC是陶—粲物理能区最先进的正负电子对撞机,实时观测基本粒子对撞产生的“碎片”,研究、探索粒子的性质和相互作用规律,发现新粒子。与此同时,这个大科学装置还在生物、材料、物理、化学、环境、能源等科学领域发挥着重要的作用

北京市玉泉路上,一片灰色低矮的楼房格外静谧,很难想象这里就是北京正负电子对撞机(BEPC)国家实验室。我国第一台大科学装置——北京正负电子对撞机坐落于中科院高能物理所,一年当中有10个月在高速运转,目标是寻找物质深层次的结构,发现新粒子,探索宇宙的奥秘。这是全世界物理学家共同的追求,谁能发现新物理、新现象和新粒子,谁便是最大的赢家。

大装置探索“小宇宙”

中科院高能物理所大装置管理中心工程师何培元告诉经济日报记者,因为正在执行一年一度的任务——利用对撞机产生的同步辐射光开展多学科的研究,此时位于地下的储存环隧道大门紧闭,操作人员在楼上的监控室内紧盯运行状态。

在科学家们看来,对物质结构认识的每一个重大突破都会对社会发展产生重大影响。而对撞机等加速器的问世,开创了粒子物理的新纪元。

随着科学技术的发展,人类对于物质结构的认知从分子、原子、原子核层次,逐步深入到更小的结构单元——轻子和夸克。已知的这些“基本”粒子是否是物质的最小单元,是否还有新粒子存在,它们的质量几何、有啥特性……揭开这些谜题,一方面需要能产生极高能量的加速器将这些微小粒子打碎,进一步研究其微观结构;另一方面,寻找新粒子的任务,也有赖于这一“抓捕”工具。

“超级粒子大炮”,是科学家们送给北京正负电子对撞机的外号,它由4个部分组成:电子注入器、储存环、大型粒子探测器北京谱仪、同步辐射装置,从沙盘上看,外形像一只硕大的羽毛球拍。

作为见证者,中科院高能物理所研究员张闯在这座地下迷宫已工作了30年。他告诉记者,球拍的直柄部分是注入器,在这里,电子枪发射的正负电子束流,经一台202米长的直线加速器被加速到1.1—1.89GeV(1GeV=10亿电子伏特)。球拍的圆形部分是储存环,这是一台周长为240米的环形加速器,它将正负电子束流加速到光速,并加以储存。球拍的顶端是对撞机的心脏部位——北京谱仪,在这里,正负电子束流按相反的方向以每秒125万圈的速度狂奔,并聚焦到大小只有头发丝十分之一左右的空间内对撞,巨型机器犹如几万只眼睛,实时观测基本粒子对撞产生的“碎片”——次级粒子,并记录相关数据。

对这些数据进一步分析、研究,探索这些粒子的性质和相互作用规律,便有可能观测到新现象和发现新粒子。

挖掘物理研究富矿

北京正负电子对撞机呱呱坠地的那个秋天,对于86岁的中国科学院院士、中国科学院高能物理研究所原所长方守贤来说,仿佛还是昨天的事,“BEPC正式建成,从此,我国有了第一台大科学装置”。

在方守贤的记忆里,北京正负电子对撞机是在“七上七下”的挫折中诞生的。我国1958年就设计出20亿电子伏电子同步加速器,但在当时的形势下,这一设计因“保守落后”被否。1960年5月,科学家完成了螺旋线回旋加速器的初步设计,由于经济困难,方案3年后被取消。1969年,科学家又提出了建造强流直线加速器用于探索、研究、生产核燃料的计划,可是计划在与另两个方案的争论中无疾而终……

1981年5月,中科院高能所在国内外专家学者的建议和意见的基础上,提出了第8个方案——建造束流能量为22亿电子伏的正负电子对撞机。1984年10月7日,邓小平同志为北京正负电子对撞机工程奠基铲下第一锹土。

为何是22亿电子伏?一般来说,不同类型和不同能量的高能加速器服务于不同目的的粒子物理实验,每台加速器一般只能在一定能区工作,进行特定的物理研究。尤其是对撞机,能量可调的范围很小,能量高的对撞机并不能代替能量低的对撞机。

之所以选择2×22亿电子伏正负电子对撞的能区,张闯解释,电子束的能量不同时,对撞产生的粒子也不同。1.55GeV的正负电子束对撞时,会产生J/Psi粒子(由粲夸克组成的一种粲粒子);1.78GeV的正负电子束对撞时,产生陶轻子(轻子的一种,电子也是一种轻子)。通过控制对撞的电子束流的能量,BEPC就可以研究这两种不同的粒子。这两种粒子是BEPC的主要研究对象,它们所在的能量区域属于陶—粲物理能区,是物理研究的富矿。

不仅如此,BEPC的投资较相同能区的质子加速器要小得多,还可以“一机两用”——高速运转的正负电子在轨道转弯时会发出同步辐射光,这种光具有强度大、高度准直等优点,可以用于开展多学科的应用研究。

事实证明,这一选择没有错。1992年,用于探测并记录正负电子对撞全过程的北京谱仪,精确测量出粒子物理标准模型中的τ轻子质量,修正了以前的实验结果,至今仍是世界上最为精确的测量之一。

2013年3月,该装置发现了一个新的共振结构Zc(3900),极有可能是科学家们长期寻找的“四夸克物质”。这一成果一经发布立即引发世界实验和理论物理研究热潮,入选美国《物理》杂志公布的2013年物理学领域十一项重要成果,并位列榜首。

牢牢抓住赶超机会

除了“高大上”的基础研究领域,BEPC还在生物、材料、物理、化学、环境、能源等科学领域发挥着重要的作用。在抗击非典的斗争中,一项关于药物与非典病毒分子相互作用的研究工作就是在BEPC上完成的:中国科学院院士饶子和利用同步辐射系统在世界上率先完成了SARS病毒蛋白质DNA结构的测定,首次获得了其蛋白酶大分子结构,得到了有效的药物靶分子,为研制治疗SARS病毒的药物提供了重要信息。

如今人们触手可及的互联网也与BEPC有着密不可分的联系。1986年我国建成第一条国际计算机通信线路,1993年建成第一根国际互联网专线,之后,建立中国第一个万维网(WWW)网站……这一切都和BEPC直接相关。

斗转星移,如今BEPC已走过了30个年头。在BEPC运行研究的陶—粲物理能区,曾经有个强劲的对手——美国康奈尔大学。但是,BEPC凭借优异的表现和升级改造打败了它,成为目前该能区世界唯一也是最先进的正负电子对撞机。

欣喜之余亦有隐忧。张闯说,在高能物理研究领域,只有第一没有第二,每个国家的加速器都有自己的实验能区,一旦同一个能区有了竞争者,最终只能有一个胜出。

未来,BEPC寿终正寝,中国高能物理何去何从?瞄准世界物理最前沿热点——希格斯玻色子粒子研究,规划建设更高能量的新一代对撞机环形正负电子对撞机(CEPC),这是中国高能物理学家们的新目标。中科院院士、中科院高能物理研究所所长王贻芳说,研究希格斯粒子,是通向更深层次物理的钥匙,正好给我国的高能物理发展提供了一个赶超、领先的绝佳机遇。一旦环形正负电子对撞机建成,中国将成为全球高能物理研究的中心,吸引全世界最优秀的一批科学家和工程师来华工作,并作为龙头带动一系列核心技术的发展,在核物理、国防、材料、微加工、大型部件检测等方面可以大量应用。

王贻芳透露,截至目前,新一代对撞机CEPC已完成概念设计并获国际评审认可,经费也基本到位,预研工作全面展开。(记者 沈 慧)

与正负电子对撞机一起过年 叩击微观世界大门

在北京西郊地下,占地5.75万平方米的北京正负电子对撞机(BEPC)正在运行着。202米长的直线加速器通过两条输运线连接着周长240.4米的环型加速器,正负电子束会被加速到符合实验需求的能量,最终抵达最南侧的对撞点。

这里在进行的,是物理学最微观也最前沿的基础研究。正负电子对撞机是为基础粒子物理研究而建造的粒子加速器,粒子加速器不仅是进行高能物理、原子核物理、生命科学、材料科学等多种基础科学研究的重要实验装置,而且在工农业生产、医疗卫生、工业辐照、航天等领域,也有着广泛的应用前景。

2月2日凌晨,在北京正负电子对撞机的中控室里,一字排开的电脑屏幕上不断有数字跳动,展示着对撞机的运行情况。墙壁上的一排屏幕则分别可以看到不同系统的运行情况。

2时10分,一条原本在屏幕上规律波动的红线(正电子流强曲线)突然急转直下,落到了屏幕最下方。值班的工作人员立刻紧张起来,这意味着机器出现了故障。经过排查,工作人员发现加速器真空管道上第二区段两道真空阀门落了下来,阻断了从这里通过的正电子束。

幸好,故障没多久就自动排除,屏幕上,正电子束的曲线恢复了正常。

据中国科学院高能物理研究所加速器中心的研究人员尹頔解释,有时候,故障可以像这次这样自主排除,有时就需要技术人员干涉了。

“大装置里有很多次级系统,比如高频系统、低温系统、束测系统、电源系统,等等。大多时候都在稳定运行,偶尔会出现突发故障。每一个系统对对撞机来说都很重要,有时候是单独出现故障,有时候它们可能比较复杂,这就要依靠我们运行值班人员去判断。”尹頔对中青报·中青网记者说。

今年过年期间,尹頔也和前两年一样,陪着这台对撞机一起过年。独自住在员工宿舍的他还记得,每年过年,单位的员工餐里都会有饺子。

身为90后的魏彦茹,老家在河北,已经多年没能回老家,准备在今年的两次值班间隙,抽空回去两天,陪一陪自己70多岁的母亲。

“主要是因为故障有突发性,所以需要我们值班人员时刻关注,保持积极的状态。”尹頔说,“我们就是坚守在科研蜂巢里的‘工蜂’。”

同样作为一个90后,尹頔有时会用更活泼的方式,向别人解释自己工作的地方是干什么的:“就是那个在超级英雄电影里让闪电侠变成‘闪电侠’的地方。”朋友们也跟他开玩笑:“你会不会也变成‘闪电侠’?”

当尹頔看到这些超级英雄电影里实验装置出故障的剧情,他的第一反应是“太夸张了”“有BUG”,虽然现实当中没有出现过这样严重的故障,但是依然会思考如果自己在现场,该怎么处理,怎么排障。“看电影的时候,我更多会去想怎么能尽快恢复电影里这台机器的运行状态。甚至会想该如何预防,让这种故障不要出现。”尹頔说。

作为加速器中心的应急处理“On Call”(待命)人员,尹頔至今记得刚工作时,突然出现一个故障,“有点慌有点怕”,怕自己不知道怎么办,或者是判断得不对、不及时。

如今,这个33岁的年轻人已经算得上经验丰富,他略带自豪地告诉记者,其实,“我们的故障率,跟全世界的加速器对比下来,不是很高的”。

这台北京正负电子对撞机,由注入器、输运线、储存环、北京谱仪和同步辐射装置等多部分组成。它于1988年10月首次实现正负电子对撞,在2009年9月完成升级改造并正式投入运行,除用于高能物理实验外,可作为同步辐射光源提供真空紫外到硬X光,开展凝聚态物理、材料科学、生物和医学、环境科学、地矿资源,以及微细加工技术方面等交叉学科领域的应用研究,达到“一机两用”。

“每年都有大量的学术论文,基于这些装置而产生。”魏彦茹有些自豪地对记者说。

据了解,粒子加速器是一门多专业交叉融合的综合性学科,它涉及加速器物理和众多高精尖技术,其中包括微波、功率源、超导、低温、超高真空、精密机械、束流诊断、电源、磁铁、电子学、计算机及网络、自动控制、辐射防护等。

魏彦茹的专业正是物理,她告诉记者,如今这台正在运行的对撞机,在去年还当了一把“网红”,出现在了科幻电视剧《三体》中。剧中的物理学家杨冬背后,就是这台对撞机蓝色管道的一部分。

与科幻情节不同的是,现实中的正负电子对撞机并没有受到外星人的干扰,组成物质的最基本的粒子在这里一次又一次对撞,撞出新的实验数据。在这里,粒子物理和核物理的发展脚步不断向前,走向无人探寻过的未知领域。

“物理学就是告诉人们,有些问题是可以得到解答的。然后会发现更多不理解的事情,我们就在探索的路上一直前行。”尹頔说。

这个年轻人仍然记得,自己为什么会走到这条科研之路上来——为了好奇心。

作者:张渺

来源: 中国青年报

相关问答

当电源关闭,电解池还继续电解么?怎么电解? 正负电子 的移动方...

[最佳回答]当电源关闭,电解池停止电解.没有了电源,电解池当然要停止了.此时的电解池有可能变为原电池.比如电解水的电解池,结束电解后,短时间内变为氢氧燃料电...

世界各国的 正负电子 对撞机以及它们的 应用 ? - jlCBQnHjJ6I 的...

正负电子在对撞机里相向高速回旋、对撞,探测对撞产生的“碎片”——次级粒子并加以研究,就能了解物质微观结构的许多奥秘。虽然我们还不能预言这些...

为什么 正负电子 会互相吸引?

正电子是电子的反粒子,除带正电荷外,其它性质与电子相同。正电子是不稳定粒子,遇到电子会与之发生湮灭(Annihilation),放出两个伽玛光子(gammarayphoton),...

【通电为什么需要导体通电为什么要用导体.电荷【 正负电子 】...

[最佳回答]因为导体中有自由移动的电子,像空气之类的绝缘体没有可以自由移动的电荷,所以不能导电

有人说光子可以变成一对 正负电子 ,这是真的吗?

原创思想,一对伽马光子变为一对正负电子的假设,完全是进入了爱氏质能方程的误区,光子没有质量,又如何`变’出质量来?很显然必须有质量点俘获并囚禁光子,光子...

正电跟负电有什么作用?我们通常使用的是正电还是负电?

电池有两个电极,一个正极,一个负极。我们使用的是电流,电流好比水流,水必须从高位往低位流,才能形成水流。这个正极好比高位,负极好比地位,因此我们使用电...

一对 正负电子 可以湮灭成两个光子与电荷不能消失矛盾吗?

宇宙中正电荷和负电荷的数量是一样多的,所以,宇宙电荷守恒,总量为0。那么湮灭了,没有违反这一定律啊。宇宙中正电荷和负电荷的数量是一样多的,所以,宇宙电荷...

用电池 正负极 连接手机 手机会好不好?-ZOL问答

只要手机正负和电池正负接上就可以开机了!你自己试试就知道了,不会烧坏的,中间...用打火机上的电子.电正负级电压一样就可以4条回答:【推荐答案】没有可能!只...

一个带正电的金属球,用手摸一下,有谁给我说一下带电体 电子 与...

[最佳回答]不带电了.首先说明下,金属中移动的是电子,并不是所有的带电体都是研究电子.金属球带正电并不是他有多余的正电荷,而是他带负电的电子跑掉了.远离电...

电子 哪面 正负 -ZOL问答

电子哪面正负讨论回答(8)纽扣电池查看正负极的方法:1,目测,顶面比较圆润,是负极,底面比较平整,是正极;2,看标示,顶面往往没有任何标示,底面有“+”符号正极...