电子衍射分析应用 透射电子显微镜(TEM)电子衍射技术在晶体结构分析中的三大应用

小编 2025-01-22 论坛 23 0

透射电子显微镜(TEM)电子衍射技术在晶体结构分析中的三大应用

晶体材料由于具有有序结构而表现出许多独特的性质,成为特定的功能材料,制成器件广泛应用于微电子、自动控制、计算通讯、生物医疗等领域。功能晶体材料微观结构决定了材料的性质,所以解析材料微观结构一直以来都是科研的重点之一。

研究晶体结构通常的方法是 X-射线单晶衍射技术(SXRD, Single crystal X-ray diffraction)和 X-射线粉末衍射技术(PXRD, Powder X-ray diffraction),科研人员应用此两项技术已经解析了数目非常庞大的晶体结构。然而 X-射线衍射技术对于解析的晶体大小有限制,即使是应用同步辐射光源也只能解析大于微米级的晶体,无法对纳米晶体的结构进行解析。

与X-射线相比,电子束因其波长较短和衍射较强,电子衍射在纳米晶体结构分析中的应用显得尤为重要,透射电镜既能高分辨成像纳米晶体,又能电子衍射分析纳米晶体材料,已经成为纳米晶体材料必不可少的一种研究手段,其中包括纳米结构生长方向的判定、对纳米晶体晶胞参数和原子排列结构进行了解析等等。

判断已知纳米结构的生长方向

在晶体结构的研究中,许多时候都要对它们的优势生长面和方向进行判断,特别是纳米线和纳米带的生长。晶体的电子衍射图在二维倒易平面上被放大,而在透射电镜上可以获得形貌,它们分别对应于倒易空间像和正空间像,正空间的一个晶面族(hkl)可用倒空间的一个倒易点 hkl 来表示,正空间的一个晶带[uvw]可用倒空间的一个倒易面(uvw)*来表示,对应关系如图 1 所示,在透射电镜中,电子束沿晶带轴的反方向入射到晶体中,受晶面族(h1k1l1)的衍射产生衍射斑(h1k1l1),那么衍射斑与透射斑的连线垂直于晶面族(h1k1l1),据此可判断晶体的优势生长面及生长方向。

具体方法如下:先拍形貌像并对相同部位进行电子衍射,从形貌像中寻找优势生长面并和电子衍射花样进行比较,寻找与透射斑连线在该晶面上的透射斑并对其校准,依据晶面指数转换生长方向。

如图 2 所示是判断一维纳米线的生长方向,首先对电子衍射进行标定,纳米线的优势生长面为与纳米线垂直的面,在电子衍射图上找出与此面垂直的透射斑与衍射斑的连线,确定优势生长面是(0-11)面,由于该物质是四方晶系,根据四方晶系的正倒易转换矩阵,将(0-11)面转换为生长方向[0-12]。

图 1 晶带正空间与倒空间对应关系图

图 2 某金属氧化物一维纳米线的透射电镜及电子衍射图

手动解析纳米晶体的晶体结构参数

如上所述,电子衍射图代表晶带轴倒易点阵,若允许晶体沿特定晶带轴转动,则仅能获得晶体结构的二维信息,得到一系列电子衍射花样可得若干晶带轴倒易点阵并可基于这些电子衍射花样及倾转角重建三维倒易点阵,由此可判断出未知结构所归属的晶系及其晶胞参数。

特定晶带轴一般选择最密排的点,有可能对应晶体的单胞参数,另外,在旋转晶体时是通过透射电镜的双倾台在两个相互垂直的方向上进行旋转,使晶体从一个晶带轴到另外一个晶带轴,最终的旋转角由两个方向的转角合成。

例如,利用该方法测定了实验室合成氧化锌纳米线晶体结构,先获得了正带轴上一幅电子衍射花样而没有倾转,再转动晶体而密排点不动,依次转到另外三个正带轴如图 3 所示,并通过 X, Y 倾转的角度合成出空间旋转角;如图 4 所示,以密排点阵为横坐标,分别旋转相应的角度做线,然后分别量出密排点阵与相邻点阵之间的倒易距离,据此距离在对应的线上画出对应的倒易点阵点,根据对称性画出其他点阵点,即重构出了氧化锌的三维倒易点阵;由倒易点阵的六次对称性可判断此纳米线为六方晶系,通过进一步计算得到其晶胞参数为 a=3Å, b=3Å,c=5Å, α=90º, β=90º,γ=120º。

图 3 氧化锌纳米线不同晶带轴的电子衍射花

图 4 氧化锌纳米线三维倒易空间的重构

这种方法需人工倾转试样,两方向相互配合转至正带轴上,转动时试样要回位,故要求操作者具有充分的工作经验,而需要耗费一段时间,对有机晶体等不耐电子束辐照的试样难以获得足够数量的正带轴电子衍射花样。此外,受人工获得衍射花样有限和存在电子衍射多重散射等动力学效应、作用,原子排列结构不能解析,一定要象X-射线单晶衍射仪一样能在采集大量衍射数据和合成自动标定的情况下,实现试样的自动倾转和原子结构排列信息的获取。

自动解析未知纳米晶体的原子结构

近年来,以瑞典斯德哥尔摩大学教授邹晓东为代表的科学家开发出一种自动采集电子衍射花样和分析纳米材料原子排列情况的方法,这几种方法均削弱了电子衍射的动力学效应,使电子衍射能够象X-射线单晶衍射那样解析晶体中原子排列结构。

这些方法主要包括旋进电子衍射(PED, Procession electron diffraction)及电子衍射三维重构(ADT, Automated diffraction tomograpHy; RED, Rotation electron diffraction),已解析出沸石、金属有机骨架(MOFs, Metal-organic frameworks )、共价有机骨架(COFs, Covalent-organic frameworks )等多种纳米材料的原子排列结构。旋进电子衍射 PED 是采用类似 X-射线衍射中的旋进技术,只是试样不偏不倚,而把电子束以小角度偏斜,沿着和透射电镜光轴共轴的锥面对试样表面进行扫描,其间利用软件对每张电子衍射花样进行自动采集,并对其进行合并分析,这能够极大地降低多重散射,从而能够极大地降低动力学效应,使空间群的识别变得比较容易,通过衍射强度分析来揭示纳米材料原子排列结构。

已用这种方法解析了沸石如 MCM-22, SSZ-48, ITQ-40 等的晶体结构,如图 5 为 SSZ-48 三个晶带轴的电子衍射及由此得出的结构模型。现在,已有商业化的控制电子束旋进的硬件及配套的采集、分析衍射图的软件。

图 5 SSZ-48 三个晶带轴的电子衍射及结构模型

图 6 由 RED 重构的 ZIF-7 三维倒易空间点阵及经过精修后的结构模型

PED 技术通常是沿着晶体的某个晶带轴旋进,要求转正晶体的带轴,而电子衍射的三维重构技术 ADT 和 RED 是使样品进行大角度范围的倾转(通常﹣30º到 +30º ),无需转正晶体的带轴,可沿任意带轴进行数据采集,因此比 PED 技术更有优势。比如由邹晓东教授团队开发的 RED 技术是在控制测角台即样品旋转的同时,控制电子束的偏转,通常样品每转 2º-3º,电子束同时倾转 0.1º-0.4º,这样避免了动力学效应,应用软件在不到一个小时之内可采集上千张电子衍射图,之后再进行谱图融合、单胞确定、指数标定、强度提取等数据处理,之后可应用与 X-射线单晶解析相同的方法进行结构解析及精修,如图 6 为应用 RED 技术解析的一种 MOFs (ZIF-7)的结构。

由此可见,应用RED这种技术可将透射电镜发展成为能够解析纳米晶体未知结构的电子衍射仪,预计将在纳米晶体结构研究方面发挥非常重要作用。当然现在电子衍射解析晶体结构的主要问题之一就是电子束破坏试样,而破坏可以用低温等来削弱。

华中科技大学科研团队发表超快电子衍射技术的发展研究综述

原子运动及相应的结构改变是自然界中化学反应、生命过程等现象的本质。因此,在原子层面实时间、实空间观测物质非平衡态的原子运动和结构演化过程,能深刻地解释这些现象的本质,将物质的微观动力学过程和其物理化学等特性联系起来,为科学突破创造了巨大的机遇。

原子层面的动态过程的特征时间在皮秒、飞秒、甚至阿秒量级,目前只有泵浦-探测技术可以实现该量级的时间分辨率。超快电子衍射使用电子作为泵浦-探测技术中的探针,具有高弹性散射截面、低能量沉积、造价及维护成本低等优势,在近十余年间获得快速发展。

华中科技大学电气与电子工程学院的宋怡方、王健、刘铮铮、樊宽军,在2022年第19期《电工技术学报》上撰文,总结近年来超快电子衍射中关键技术的发展,并对新一代超快电子衍射的发展趋势进行展望。

抽象科学,牵手原子粒子,核能图像和黑暗背景下的网络连接。,Abstract science,

物质是由原子、分子、电子等微观粒子组成,其结构以及运动状态决定物质的宏观性质。物质微观结构发生改变,其宏观性质就会发生相应改变。因此,实验化学家都有这样的梦想:实时观测化学反应过程中的原子核及电子运动(拍摄“分子电影”)。这样能更深入地理解化学反应的本质,进而控制某些反应过程。

比如很多化学反应过程中的中间产物形成、结构与性质等现象及其机理还未被充分认识,所以研究原子的动力学行为,有助于理解其相关的物理、化学、生物等宏观物性,最终控制这些微观行为并设计新的物质性质,这是当今科学研究中重要的基础内容。

由于原子运动的特征时间在百飞秒量级,此条件下的瞬态过程研究被称为“超快科学”。对这些超快动力学行为的直接观测是超快科学研究的基础,是解答许多科学问题的关键,也因此,激发了人们发展出各种先进的方法和手段,来获取物质的更快更细致的微观动态信息。

飞秒激光最早用于研究物质的超快过程。加州理工学院A. H. Zewail教授使用了基于飞秒激光的泵浦-探测技术观测到化学反应中原子和分子的瞬态状态,从根本上改变了人们对于化学反应的认识,获得1999年诺贝尔化学奖。

由于激光的波长决定其空间分辨率,因此利用波长更短的X射线作为探针的超快X射线衍射(Ultrafast X-ray Diffraction, UXD)技术迅速发展起来,成为目前使用最广泛的超快研究工具。20世纪80年代,Rochester大学的G. Mourou提出了利用电子束作为探针观测超快过程,推动了超快电子衍射(Ultrafast Electron Diffraction, UED)技术的发展。目前,超快X射线衍射和超快电子衍射已经发展成为互为补充又不可替代的两种超快探测技术,在许多领域已经取得了丰硕的成果。

超快探测技术在物质的结构和动力学之间搭起一座桥梁,将传统的化学、物理、生物以及材料科学等学科的研究带入飞秒科学的领域, 创造了巨大的机遇。超快电子显微由于其弹性散射截面高、能量沉积小、造价及维护成本低等优势,成为目前超快科学研究的重要手段之一。

华中科技大学电气与电子工程学院的研究人员指出,超快电子衍射经过几十年的发展,取得了显著成果,目前已经可以实现对一些简单的分子结构拍摄分子电影。但是产生探测生物大分子等复杂结构的不可逆过程所需的高亮度飞秒电子束目前还存在一定的难度,其本质原因仍是空间电荷效应和高亮度之间的矛盾。

他们认为,未来超快电子衍射的发展目标一方面是针对生物大分子的不可逆的生命科学超快过程的研究,发展高电荷量的飞秒电子探针技术,实现单发成像;另一方面针对可逆过程,则需要发展高重频的电子源理论与激光技术,在通过降低电荷量消除空间电荷效应的同时,提升实验效率。针对以上目标,以短半腔长度的常温微波电子枪、超导微波电子枪为主的传统电子源将继续发展,同时基于太赫兹(THz)和激光技术的新型电子源和束团操控技术也将为超快电子衍射的发展带来新的机遇。

研究人员表示,当前的超快电子衍射已经被成功用于物理、化学、材料等可逆超快过程的研究。然而,许多物质的超快过程不可逆,只能通过单发泵浦探测来获得其演化过程信息,单发电子脉冲获得足够清晰的衍射图像。因为不需要反复泵浦探测,对样品的辐射损伤很小,这是未来超快电子衍射的一个重要发展趋势,为不可逆过程(如生命科学)的超快动力学研究提供了重要手段。

但是,有机大分子物质主要由轻原子组成,对电子的散射效果较弱,探测蛋白质需要约107个电子才能获得清晰图像。要求电子“探针”的亮度比常规超快电子衍射的亮度高2~3个数量级,其束流的峰值电流与现在的XFEL相当,所以空间电荷效应对束流品质影响显著。这为高品质超快电子束的产生与操控带来了极大的挑战。

发展趋势:高亮度电子源

超快电子衍射技术的核心是电子探针技术的进步,因此发展高性能电子源理论及相关技术是未来超快电子衍射必须解决的首要问题。限制超快电子束峰值亮度的主要原因是阴极处的空间电荷效应。因此提高光阴极处的加速电场梯度,是降低空间电荷效应、增强电子束亮度的有效手段。针对不同的研究问题,需要不同性质的电子源。经过不断的理论与技术积累,电子源的性能逐步向前推进。

1)常规RF电子枪技术

当前MeV UED使用1.6-cell微波电子枪,是借鉴了用于自由电子激光等高能加速器的电子源设计。但MeV UED的电子束能量为3MeV左右,仅使用了1.6-cell约60%的加速能力,导致在加速过程中低能电子束内部的空间电荷效应较为严重。

为解决上述问题,UCLA的P. Musumeci提出1.4-cell微波电子枪方案,通过理论和束流仿真说明了1.4-cell微波电子枪在MeV UED应用中可能更具优势。华中科技大学与大阪大学和KEK合作,首次研制成功1.4-cell微波电子枪,初步测试表明,在高电荷量条件下,比1.6-cell电子枪具有显著的优势]。尤其在电子起始加速阶段,电场梯度高3~5倍。

为了提高超快电子实验效率,超导电子枪也是发展的一个趋势,同时具备了高重复频率和高加梯度的优势。在提供高电荷量的状态下可以极大地提高电子束的重复频率,克服目前常温RF电子枪的工作频率过低的问题,大大缩短实验时间,提高了工作效率。

2)太赫兹驱动电子枪

传统的RF或DC电子枪,由于电场击穿的限制,不能产生高的加速电场梯度(RF: 200MV/m, DC: 10MV/m),导致电子束质量难以提高,限制了超快电子衍射的性能。太赫兹频段的激光脉冲是合适的驱动源,其频率比常规RF高2~3个数量级,可以产生高达GV/m的加速梯度,具备产生超短、高亮度电子束的潜力,使得太赫兹光谱范围非常适合于发展电子枪技术,太赫兹电子枪示意图如图1所示。其挑战在于时变电磁场频率非常高,电子枪结构设计困难。

强场太赫兹脉冲源技术的发展开辟了高效加速的新途径带电粒子,降低了电子束能散,提高束团电荷量,消除了电子束抖动等。目前,太赫兹电子枪还处于原理验证阶段。

图1 太赫兹电子枪示意图

3)激光加速器

激光尾场加速(Laser Wakefield Accelerators, LWFA)由于能提供极强的加速场,是一种新兴的加速技术,有可能克服现有常规电子加速器的局限性。常规电子加速器基于射频腔,加速电场梯度受限于真空射频击穿小于100MV/m。相比之下,激光尾场加速技术利用等离子体介质中产生的强电场(>100GV/m),而不会产生击穿问题。

由于激光尾场加速技术可以提供的加速电场梯度比常规RF技术高3个数量级,空间电荷力的作用时间短,可以急剧降低空间电荷效应,实现紧凑、高效的加速电子。激光尾场加速技术可提供与激光源同步的飞秒电子束,实现前所未有的时间分辨率,并具有单发测量的能力,基于激光加速器的超快电子衍射示意图如图2所示。该方案可用于研究等离子体和致密材料中的超快动力学现象,如瞬态磁场、快速演化的等离子体动力学和晶格振荡等。

图2 基于激光加速器的超快电子衍射示意

发展趋势:太赫兹操控高亮度电子束

为了消除基于射频电磁场的超快电子束团操控技术引入的时间抖动,基于太赫兹驱动的束团操控和测量方案被提出,相应的理论与技术逐渐发展起来。该方法具有三项优势:①太赫兹脉冲与电子束同源于同一束激光,根本上消除了相互之间的相位抖动;②太赫兹波段相比射频波段频率提高了约3个数量级,可提供GV/m量级操控电磁场;③太赫兹的波长与超快电子束的长度在同一量级,因此可以更准确、高效地对电子束进行操控。

太赫兹驱动操控电子束的理论与技术不断发展,其原理验证实验也逐步开展。2014年,德国L.Wimmer等完成了太赫兹操控纳米尖端光电子发射实验,产生太赫兹峰值场强达到约900MV/m,实现太赫兹驱动电子束的加速、压缩和展宽等操作。同年,Bern大学的J. Fabianska等提出将太赫兹能量聚集在分裂环(Split-Ring Resonator, SRR)间隙中,以获得GV/m量级的时变电场,进行束长测量实验。2016年,慕尼黑大学C. Kealhofer等提出了可用于束长测量和束团压缩的SRR,并完成了首个全太赫兹驱动的束长测量和束团压缩实验。

华中科技大学也在此方面开展深入的理论与技术研究,提出了飞秒电子束串的测量方法。随着太赫兹技术的发展,目前通过多种技术已经可以产生加速电场梯度大于1GV/m、脉冲能量高达数十mJ的太赫兹驱动脉冲,这也为未来太赫兹驱动的束团压缩、测量、加速等技术的发展提供了坚实的基础。

本文编自2022年第19期《电工技术学报》,论文标题为“超快电子衍射研究及发展综述”。本课题得到科技部高端外专项目的支持。

相关问答

电子衍射 为什么能测定薄晶片结构】作业帮

[最佳回答]与X射线衍射相似,高速运动的电子束作用于晶体(或气体)中的原子,也会产生衍射现象.电子衍射也可以用于测定晶体(或气体分子)的结构.由于电子带负电荷...

x射线对晶体结构的研究1,x射线产生的原理2,x射线为什么能够研...

[回答]1产生原理:高能电子打在原子上,会激发原子的内层电子,留下空位,这时原子高能级的电子就是自发向空位跃迁同时放出能量,这种能量就是以x射线的方式...

电子衍射 实验说明什么?

电子的衍射现象说明实物粒子具有波动性。实物粒子就是在“波粒二象性”中,更多表现为“粒子性”的粒子,一般体现为物质波波长极小。电子以上(中子,质子,原子...

这张选区 电子衍射 图怎么 分析 ?图中的点代表什么?-盖德问答-化...

我想请问一下我看很多文献中选区电子衍射图都有如你这张中一样出现一段黑色棒状的东西请问那是什么?仪器的投影么?因为我做的图里面没有所以觉得...

分析电子衍射 与x射线衍射有何异同?

电子衍射与X射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律.但电子波是物质波,按入射电子能量的大...

电子衍射 和X射线衍射的异同点如题,最好分点描述,越详细越好....

[最佳回答]电子衍射与X射线衍射一样,遵从衍射产生的必然条件(布拉格方程+反射定律,衍射矢量方程或厄瓦尔德图解等)和系统消光规律.但电子波是物质波,按入射电...

分析 一张TEM选区 电子衍射 照片-盖德问答-化工人互助问答社区

这不应该是一圈一圈的嘛一组点,没啥标的意思,正带轴重拍吧一组点,没啥标的意思,正带轴重拍吧请问这个明暗相间的点是因为什么呢,我看着还挺有规律的

介绍了他用 电子 束做的一系列 衍射 和干涉实验。其中他做的双...

[最佳回答]BD解题的关键由动能定理求出电子的速度表达式,然后求出德布罗意波波长与电压的关系式,再由判断。设加速电压为U,双缝间距离为d,衍射屏到双缝距离...

单晶 电子衍射 和多晶电子衍射花样的区别?

单晶由于只有一个晶格,电子衍射图样是大量衍射亮点,排布成环状。多晶是由多个晶粒组成的,其电子衍射花样是连续的同心圆环。单晶由于只有一个晶格,电子衍射...

问一下:XRD检测主要 应用 ?急需赐教

[回答]“XRD检测可以从以下步骤简单分析:1、定性分析(XRD的主要功能),通过八强峰匹配标准pdf卡片,得知样品是由哪些物质构成的。2、通过看峰宽等来分析结...