电子封装的技术有哪些应用 封装种类这么多,先带你了解9种常见技术

小编 2024-11-23 电子技术 23 0

封装种类这么多,先带你了解9种常见技术

元件封装起着安装、固定、密封、保护芯片及增强电热性能等方面的作用。同时,通过芯片上的接点用导线连接到封装外壳的引脚上,这些引脚又通过印刷电路板上的导线与其他器件相连接,从而实现内部芯片与外部电路的连接。

因此,芯片必须与外界隔离,以防止空气中的杂质对芯片电路的腐蚀而造成电气性能下降。而且封装后的芯片也更便于安装和运输。由于封装的好坏,直接影响到芯片自身性能的发挥和与之连接的PCB设计和制造,所以封装技术至关重要。

衡量一个芯片封装技术先进与否的重要指标是:芯片面积与封装面积之比,这个比值越接近1越好。

封装时主要考虑的因素:

芯片面积与封装面积之比,为提高封装效率,尽量接近1:1。

引脚要尽量短以减少延迟,引脚间的距离尽量远,以保证互不干扰,提高性能。

基于散热的要求,封装越薄越好。

封装大致经过了如下发展进程:

结构方面。TO→DIP→PLCC→QFP→BGA→CSP。

材料方面。金属、陶瓷→陶瓷、塑料→塑料。

引脚形状。长引线直插→短引线或无引线贴装→球状凸点。

装配方式。通孔插装→表面组装→直接安装。

以下为具体的封装形式介绍:

01SOP/SOIC封装

SOP是英文Small Outline Package的缩写,即小外形封装。

SOP封装

SOP封装技术由1968~1969年菲利浦公司开发成功,以后逐渐派生出:

SOJ,J型引脚小外形封装

TSOP,薄小外形封装

VSOP,甚小外形封装

SSOP,缩小型SOP

TSSOP,薄的缩小型SOP

SOT,小外形晶体管

SOIC,小外形集成电路

02DIP封装

DIP是英文“Double In-line Package”的缩写,即双列直插式封装。

DIP封装

插装型封装之一,引脚从封装两侧引出,封装材料有塑料和陶瓷两种。DIP是最普及的插装型封装,应用范围包括标准逻辑IC,存贮器LSI,微机电路等。

03PLCC封装

PLCC是英文“Plastic Leaded Chip Carrier”的缩写,即塑封J引线芯片封装。

PLCC封装

PLCC封装方式,外形呈正方形,32脚封装,四周都有管脚,外形尺寸比DIP封装小得多。PLCC封装适合用SMT表面安装技术在PCB上安装布线,具有外形尺寸小、可靠性高的优点。

04TQFP封装

TQFP是英文“Thin Quad Flat Package”的缩写,即薄塑封四角扁平封装。四边扁平封装工艺能有效利用空间,从而降低对印刷电路板空间大小的要求。

TQFP封装

由于缩小了高度和体积,这种封装工艺非常适合对空间要求较高的应用,如PCMCIA卡和网络器件。几乎所有ALTERA的CPLD/FPGA都有TQFP封装。

05PQFP封装

PQFP是英文“Plastic Quad Flat Package”的缩写,即塑封四角扁平封装。

PQFP封装

PQFP封装的芯片引脚之间距离很小,管脚很细。一般大规模或超大规模集成电路采用这种封装形式,其引脚数一般都在100以上。

06TSOP封装

TSOP是英文“Thin Small Outline Package”的缩写,即薄型小尺寸封装。TSOP内存封装技术的一个典型特征就是在封装芯片的周围做出引脚。TSOP适合用SMT(表面安装)技术在PCB上安装布线。

TSOP封装

TSOP封装外形,寄生参数(电流大幅度变化时,引起输出电压扰动)减小,适合高频应用,操作比较方便,可靠性也比较高。

07BGA封装

BGA是英文“Ball Grid Array Package”的缩写,即球栅阵列封装。20世纪90年代,随着技术的进步,芯片集成度不断提高,I/O引脚数急剧增加,功耗也随之增大,对集成电路封装的要求也更加严格。为了满足发展的需要,BGA封装开始被应用于生产。

BGA封装

采用BGA技术封装的内存,可以使内存在体积不变的情况下内存容量提高两到三倍,BGA与TSOP相比,具有更小的体积,更好的散热性和电性能。BGA封装技术使每平方英寸的存储量有了很大提升,采用BGA封装技术的内存产品在相同容量下,体积只有TSOP封装的三分之一。另外,与传统TSOP封装方式相比,BGA封装方式有更加快速和有效的散热途径。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率。虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能。厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

08TinyBGA封装

说到BGA封装,就不能不提Kingmax公司的专利TinyBGA技术。TinyBGA英文全称为“Tiny Ball Grid”,属于是BGA封装技术的一个分支,是Kingmax公司于1998年8月开发成功的。其芯片面积与封装面积之比不小于1:1.14,可以使内存在体积不变的情况下内存容量提高2~3倍。与TSOP封装产品相比,其具有更小的体积、更好的散热性能和电性能。

采用TinyBGA封装技术的内存产品,在相同容量情况下体积,只有TSOP封装的1/3。TSOP封装内存的引脚是由芯片四周引出的,而TinyBGA则是由芯片中心方向引出。这种方式有效地缩短了信号的传导距离,信号传输线的长度仅是传统的TSOP技术的1/4,因此信号的衰减也随之减少。这样不仅大幅提升了芯片的抗干扰、抗噪性能,而且提高了电性能。采用TinyBGA封装芯片可抗高达300MHz的外频,而采用传统TSOP封装技术最高只可抗150MHz的外频。

TinyBGA封装的内存其厚度也更薄(封装高度小于0.8mm),从金属基板到散热体的有效散热路径仅有0.36mm。因此,TinyBGA内存拥有更高的热传导效率,非常适用于长时间运行的系统,稳定性极佳。

09QFP封装

QFP是“Quad Flat Package”的缩写,即小型方块平面封装。QFP封装在早期的显卡上使用的比较频繁,但少有速度在4ns以上的QFP封装显存,因为工艺和性能的问题,目前已经逐渐被TSOP-II和BGA所取代。QFP封装在颗粒四周都带有针脚,识别起来相当明显。四侧引脚扁平封装。表面贴装型封装之一,引脚从四个侧面引出呈海鸥翼(L)型。

QFP封装

基材有陶瓷、金属和塑料三种。从数量上看,塑料封装占绝大部分。当没有特别表示出材料时,多数情况为塑料QFP。塑料QFP是最普及的多引脚LSI封装,不仅用于微处理器,门陈列等数字逻辑LSI电路,而且也用于VTR信号处理、音响信号处理等模拟LSI电路。

引脚中心距有1.0mm、0.8mm、0.65mm、0.5mm、0.4mm、0.3mm等多种规格,0.65mm中心距规格中最多引脚数为304。

先进IC封装,你需要知道的几大技术

先进集成电路封装技术是“超越摩尔定律”上突出的技术亮点。在每个节点上,芯片微缩将变得越来越困难,越来越昂贵,工程师们正在把多个芯片放入先进的封装中,作为芯片缩放的替代方案。

然而,虽然先进的集成电路封装正在迅速发展,设计工程师和工程管理人员必须跟上这一关键技术的步伐。首先,让我们了解高级IC封装中不断出现的基本术语。

以下是在下一代IC封装技术中使用的10个最常见的术语的简要概述:

2.5 D封装

在2.5D的封装中,模具被堆放或并排放置在一个隔片的顶部,基于硅通孔(TSV)。基座是一个交互器,提供芯片之间的连接。作为传统2D IC封装技术的一个增量步骤,2.5D封装使更细的线条和空间成为可能。

2.5D封装通常用于ASIC、FPGA、GPU和内存立方体。2008年,Xilinx将其大型FPGA划分为4个更小、产量更高的芯片,并将这些芯片连接到一个硅接口上。2.5D封装就此诞生,并最终在高带宽内存(HBM)处理器集成中流行起来。

3D堆叠封装

在3D IC封装中,逻辑模块堆叠在内存模块上,而不是创建一个大型的系统片上(SoC),并且模块通过一个主动交互器连接。与2.5D封装通过导电凸起或TSV将组件堆叠在交互器上不同,3D封装采用多层硅晶片与使用TSV的组件一起嵌入。

TSV是2.5D和3D集成电路封装技术中的关键实现技术。半导体行业一直在使用HBM技术将DRAM封装在3D IC中。

Cu TSV在Si芯片间垂直互连的使用

Intel的Lakefield的FOVEROS是3D封装典型例子,他们把硅片有逻辑的叠加在一起,也兼容常见的PoP封装内存,此外还有Co-EMIB,彻底混合EMIB和FOVEROS。

Chiplet

Chiplet是另一种3D IC封装形式,可使CMOS设备与非CMOS设备实现异构集成。换句话说,它们是更小的SoC,中文的意思就是小芯片。这是将复杂功能进行分解,然后开发出多种具有单一特定功能,可相互进行模块化组装的“小芯片”,如实现数据存储、计算、信号处理、数据流管理等功能,并最终以此为基础,建立一个“小芯片”的芯片网络。

这分解芯片的想法可以提高产量和比单片模具更低的成本。Chiplets允许设计者利用各种各样的IP而不必考虑它们是在哪个节点或技术上制造;它们可以在硅、玻璃和层压板等多种材料上建造。

Fan-Out扇出封装

Fan-Out封装是使用环氧模具复合材料完全嵌入模具,这样就省去了晶片碰撞、熔炼、倒装芯片组装、清洗、下填分配和固化等工艺流程。扇出封装的连接在芯片表面呈扇形展开,以方便更多的外部I/O。这反过来又消除了对交互器的需求,并简化了异构集成的实现。

Fan-Out技术提供了一个比其他封装类型具有更多I/O的小尺寸封装。2016年,iPhone7上的16nm A10处理器和天线开关模组使用了扇出晶圆级封装(Fan-out Wafer Level Packaging,简称FoWLP)技术,取代了传统PCB,从而一举成为科技明星。而A10的制造商台积电是FoWLP技术的领先者。在台积电内部,他们把FoWLP称作InFoWLP,其中In代表integrated,也就是集成的意思。

扇出型晶圆级封装(FOWLP)

扇出型晶圆级封装是一大改进,为晶圆模提供了更多的外部接触空间。将芯片嵌入环氧模塑料内,然后在晶片表面制造高密度重分布层(RDL)和焊料球,形成重组晶片。

通常,它首先将前端处理的晶圆片分割成单个晶圆片,然后将晶圆片在载体结构上分隔开,填充间隙以形成再生晶圆片。FOWLP在封装和应用板之间提供了大量的连接。此外,基板本质上比模具大,所以模具间距更宽松。

硅胶倒装芯片嵌入到玻璃衬底中,然后RDL在芯片上扇动,形成一个贯穿玻璃的通道

异构集成

将单独制造的组件集成到更高级别的组装中的方式,使得功能和操作特性都会得到提升。它使半导体器件制造商能够将来自不同制造工艺流程的功能部件组合成一个单一的复合器件。

为何要用异构集成?

1.研发成本越来越高

芯片行业是典型的人才密集和资金密集型高风险产业,如果没有大量用户摊薄费用,芯片成本将直线上升。华为曾向媒体透露7nm的麒麟980研发费用远超业界预估的5亿美元,紫光展锐的一名工作人员则对记者表示,5G Modem研发费用在上亿美元,光流片就相当费钱,还有团队的持续投入,累计参与项目的工程师有上千人。

2. 设计成本也不断上涨,每一代至少增加30~50%的设计成本

业界人士指出:此前迭代无需考虑新工艺问题,只需了解65nm比90nm小多少,可以直接把90nm上的设计拿到65nm工艺上,重新设计一下马上就能做,整个过程一年半载即可完成。但现在7nm和16nm有很多不一样的地方,不能把16nm的设计直接放到7nm上,从架构到设计到后端都要做很多改变。

异构集成类似于封装内系统集成(SiP);主要指将多个单独制造的部件封装到一个芯片上,而不是在单个衬底上集成多个基片。这增强了功能性,可以对采用不同工艺、不同功能、不同制造商制造的组件进行封装。通过这一技术,工程师可以像搭积木一样,在芯片库里将不同工艺的小芯片组装在一起。异构集成背后的总体思想是将在系统级别上变化的多个组件组合到同一个封装中。

不过,异构集成在延续摩尔定律的同时也面临可靠性、散热、测试难度等多方面的挑战。

高带宽存储器(HBM)

如今,GDDR5经过这么多年的发展已然来到了一个瓶颈,光靠频率提升来提供更大的显存位宽已经没有太大空间,而这势必会反过来影响到GPU的性能发挥。相对于传统的GDDR5显存来说,HBM无疑是更加先进。

HBM是一种标准化的堆叠内存技术,它为堆栈内以及内存和逻辑之间的数据提供了宽通道。基于HBM的封装将内存堆在一起,并使用TSV将它们连接起来,这样创建了更多的I/O和带宽。

HBM也是一种JEDEC标准,它垂直集成了多个层次的DRAM组件,这些组件与应用程序处理器、GPU和SoC一起在封装中。HBM主要在高端服务器和网络芯片的2.5D封装中实现;它现在已经发展到HBM2技术,新一代技术解决了原始HBM版本中的容量和时钟速率限制问题。

这是一张AMD演示的内存架构图,我们可以清楚的看到HBM实际结构,尤其是四层DRAM叠在最底层die之上,虽然AMD一直也没有给出HBM本体的具体制作过程,但是不难想象4层绝不是HBM未来发展的极限,而随着层数的增加,位宽势必还会迎来进一步的递增。

中介层

中介层用于多芯片模具或板子的封装,相当于一个导管,在一个封装里通过电子信号实现传导。通过中介层可以完成很多运算和数据交流,相当于连接多个芯片和同一电路板之间的桥梁。使系统更小,更省电,更大带宽。它可以将信号传播到更宽的中心间距,也可以将信号连接到主板上的不同沟槽上。

中介层可由硅和有机材料制成,作为多个模具、模具和基板之间的桥梁。Silicon interposer是一种成熟的技术,由于其较高的I/O密度和TSV形成能力,它在2.5D和3D IC芯片封装中发挥着关键作用。

再分配层(RDL)

再分配层是铜金属连接线或封装中电连接的一部分。再分配层是由金属或聚合物介质材料层创建,用于将模具堆叠在封装上,以及提供通过interposer连接的芯片之间的通信,从而减轻大型芯片组的I/O间距。它们已经成为2.5D和3D封装解决方案中不可或缺的环节。

硅通孔(TSV)

TSV是2.5D和3D封装解决方案中的关键实现技术,它提供了通过模具硅片的垂直互连。它在里面填充了铜。TSV是一种通过整个芯片厚度的电子连接,它可以创建从芯片一侧到另一侧的最短路径。

这些孔洞从晶圆片的正面蚀刻到一定深度,然后通过沉积导电材料(通常是铜)将它们隔离并填充。芯片制作完成后,晶圆从背面开始变薄,露出晶圆背面的孔和金属,以完成TSV互连。

相关问答

先进 封装的 四大工艺?

在集成电路领域,先进封装通常指的是在芯片嵌入封装阶段采用的先进工艺。以下是四种常见的先进封装工艺:1.System-in-Package(SiP):System-in-Package是一...

电子封装有 几种模式各有什么特点?】作业帮

[最佳回答]我们在电子业的电子封装工艺技术中经常会听道dip封装,双列直插式封装以及ic测试电子封装.下面我们来说说这几种电子封装模式的电子产品有什么作用...

电子封装技术 专业学什么?什么是电子封装技术 申请方

[回答]每当高考结束,特别是各省份的高考分数公布之后,很多高考学生在专业选择上存在很多疑惑,志愿填报想要选择电子封装技术专业的很多同学都想了解金电子...

RFID 技术有哪些应用 领域?

不同频段的RFID读写器会有不同的特性,本文详细介绍了无源的读卡器在不同工作频率产品的特性以及主要的应用。目前定义RFID读写器的工作频率有低频、高频和超高频...

装备 封装有 什么用?

1.装备封装的作用是将电子元件或器件封装在外壳中,以保护其不受外界环境的影响,同时也方便其在电路板上进行安装和连接。2.器件的封装可以防止其受到机械损...

电子 元器件里的 封装 指的是什么? 电子 元器件里?

专业内涵在电子封装专业学习中,封装学科内涵:①是综合与交叉的学科;②以材料科学和电子科学为基础;③以材料成型和微纳加工为手段;④以微小化高密度集成化...

什么是元器件 封装技术 ?

元器件封装技术是指将电子元件及其引脚通过合适的封装材料和方法进行保护、密封和固定,以达到保护电子元器件内部电路不受外界环境干扰和损坏的目的。常见的元...

3DP 技术 原理及 应用 前景?

3DP工艺是采用粉末材料成形,如陶瓷粉末,金属粉末。制作时通过喷头用粘接剂(如硅胶)将零件的截面印刷在材料粉末上面,这样逐层打印成型。3DP技术常用耗材3D...

电子 元件中的 封装 是什么意思?

电子元件的封装是指将电子元件芯片或器件封装在外壳中,以保护其内部电路和结构,同时方便安装和使用。封装可以分为表面贴装封装和插件式封装两种类型。表面贴...

封装 工艺流程?

1.封装工艺流程一般可以分为两个部分,用塑料封装之前的工艺步骤成为前段操作,在成型之后的工艺步骤成为后段操作。2.芯片封装技术的基本工艺流程:硅片减薄...