浙大校友实现光芯片上超快光,实现100GHz级高重频电子束调控
“本次研究展示了自由电子与非线性光学的相互作用,在电子显微镜中生成了光孤子,并能实现对于电子束的超快门控,将微腔光频梳的应用拓展到了自由电子调控这一全新领域。”
对于自己的 Science 一作论文,浙江大学本科校友、美国麻省理工学院博士毕业生、瑞士洛桑联邦理工学院博士后杨宇嘉表示。
图 | 杨宇嘉(来源:杨宇嘉)
研究中,他们将片上集成的高品质因子氮化硅光学微腔置入透射电子显微镜中。
利用光学微腔的三阶非线性响应,产生了一系列非线性光学态,包括耗散克尔孤子、图灵斑图、混沌调制不稳定性等。
对于这些光学态来说,它们对应着微腔内光场的不同模式的时空调制,在频率上能够形成相干或非相干的微腔光频梳。
通过研究自由电子与这些非线性光学态的相互作用,杨宇嘉等人探测到了这些光学态在自由电子能谱中留下的特征性的“指纹”。
特别是耗散克尔孤子,它能在微腔中形成脉冲时间在 100fs 以下、重复频率在 100GHz 以上的光孤子。
同时,在本次工作之中,他和所在团队也研究了这种光孤子对于自由电子束的超快调控。
(来源:Science)
预计本次成果将实现三方面的应用:
其一,针对非线性光学动力学、尤其是非线性集成光学,可以开发基于自由电子的探测表征技术。
这不仅能为传统的光子学测量方法带来有效补充,并能展示超高的空间分辨率、与片上或微腔内光场的直接作用、以及及非侵入式测量等独特优势。
其二,在常规电子显微镜的技术基础之上,开发超快电子显微镜技术。
本次工作之中,杨宇嘉和所在课题组通过使用集成光学微腔中的飞秒光孤子脉冲,实现了超快的光-电子相互作用。
基于此,有望在常规电子显微镜的基础之上,开发超快电子显微镜技术。
预计这种技术将能使用连续的电子束、连续的激光、以及集成光学芯片,无需使用较为昂贵的飞秒锁模激光器。
进而,能将超快电子显微镜技术用于材料结构、超快动力学、光-物质相互作用的超高时空分辨率成像。
其三,用于片上介电激光电子加速器。
集成光学微腔具有较高的、以及能够达到 GHz-THz 的自由光谱范围。
利用精确设计的微腔结构,以及借助腔内光孤子对于自由电子的调控,可以实现小尺寸、高重复频率的微型电子加速器。
从而有望用于那些无需超高电子能量、但是需要具备紧凑结构的医疗仪器、工业设备和科学装置等。
(来源:Science)
曾催生两项诺奖的电子显微镜
据介绍,自由电子——在近代科学与技术中具有广泛而深远的应用。
这些应用包括电子显微镜、粒子加速器、自由电子激光、微波产生与放大、以及真空电子管等。
特别是对于电子显微镜来说,由于自由电子超短的德布罗意波长、及其与物质的强相互作用,让电子显微镜可以实现原子级超高空间分辨率的成像、衍射与能谱技术。
目前,电子显微镜已被广泛用于材料科学与结构生物学等领域。
相关学者也先后凭借透射电子显微镜成果获得 1986 年诺贝尔物理学奖、以及凭借冷冻电子显微镜成果获得 2017 年诺贝尔化学奖。
近年来,通过在电子显微镜中引入的纳米光学结构,人们实现了自由电子与光子的相互作用。
并基于此实现了一系列新成果,包括超快电子显微镜、量子相干的自由电子调控、阿秒电子脉冲、片上电子加速器、以及新型自由电子光源等。
然而,对于光学材料和光学结构的非线性光学特性在自由电子-光子中的相互作用,鲜少得到探索。
那么,杨宇嘉是如何踏入这一研究领域的?这得从他的读书时代说起。
其本科毕业于浙江大学,硕士和博士则毕业于美国麻省理工学院。读博期间主要研究纳米光学、超快光学、自由电子物理和量子物理。
在研究自由电子与纳米光学结构的相互作用时,他意识到相比品质因子较低的纳米光学天线,高品质因子的集成光学微腔有望大幅增强自由电子和光子的相互作用。
因此在考虑博士后的研究课题时,杨宇嘉联系了集成光学微腔领域的知名学者、瑞士洛桑联邦理工学院的托比亚斯·J·基本伯格(Tobias J. Kippenberg)教授。
在此之后,杨宇嘉也获得了欧盟“玛丽居里学者”的项目资助。
(来源:Science)
携带装满仪器的行李箱,乘坐火车往返德国和瑞士
当时,Kippenberg 教授正好在和德国马克斯普朗克研究所的克劳斯·罗珀斯(Claus Ropers)教授开展合作课题。
于是 Kippenberg 教授邀请杨宇嘉加入自己的课题组做博士后研究。
2021 年,杨宇嘉所在的 Kippenberg 课题组、联合 Ropers 课题组,共同开发了一项新的实验平台。
通过此,他们将透射电子显微镜与集成光学芯片相结合,使用高品质因子的光学微腔展示了低功率光波对于自由电子波函数的较强的相位调控[1],相关论文发表于 Nature。
2022 年,他们使用类似的实验平台、以及单电子与单光子探测,展示了自由电子在集成光学微腔中所产生的电子-光子对[2],相关论文发表于 Science。
然而,在上述研究之中,他们仅仅使用了集成光学芯片和光学微腔的线性光学响应,并未使用光学微腔的非线性光学特性。
对于杨宇嘉所在团队来说,他们的绝大多数研究都是围绕非线性集成光学开展。
因此,在针对自由电子-光子相互作用的研究中,他们也想探索集成光学芯片的非线性光学响应对于自由电子束的调控,从而填补领域内的空白。
在本次研究之中,杨宇嘉先是来到德国合作者的课题组里开展实验。
但是,他发现光学微腔的品质因子在电子显微镜中会降低,导致只能产生多孤子态而非单孤子态,即微腔中只有一个光孤子脉冲。
回到瑞士之后,杨宇嘉等人又重新准备了一批品质因子更高的集成光学微腔芯片,并决定用单边带调制的方法实现激光频率的快速扫描,以便更容易地获得单孤子态。
2022 年 4 月,杨宇嘉和同事阿尔斯兰·拉贾(Arslan S. Raja),再次从瑞士来到德国 Ropers 教授课题组,首次在电子显微镜中生成了单孤子态。
这次实验的成功让大家都非常兴奋。然而,在后续的数据分析中,Kippenberg 教授指出在实验中使用光放大器增强激光功率时没有过滤掉自发辐射噪声。
尽管这个小问题并不会影响整个实验的正确性和科学性,但是会影响对于实验结果的解读。
2022 年 7 月,杨宇嘉等人再一次来到德国,重复了前一次的实验工作,并恰当地过滤掉了自发辐射噪声,最终完成了全部的数据采集工作。
“为了跨国完成合作实验,我和同事 Arslan 多次携带装满实验仪器的两个大行李箱,乘坐 7-10 小时(经常延误)的火车往返德国哥廷根和瑞士洛桑。”杨宇嘉表示。
随后,杨宇嘉先后完成了本次研究的数据处理和数据分析,并使用理论仿真方法,重现了实验结果和解释了背后机制。
最终,相关论文以《微谐振器中自由电子与非线性光态的相互作用》(Free-electron interaction with nonlinear optical states in microresonators)为题发在 Science[3]。
杨宇嘉、阿尔斯兰·拉贾(Arslan S. Raja)、简-威尔克·亨克(Jan-Wilke Henke)、F. 贾斯敏·卡佩特(F. Jasmin Kappert)是共同一作。
杨宇嘉、以及瑞士洛桑联邦理工学院托比亚斯·J·基本伯格(Tobias J. Kippenberg)教授和德国马克斯普朗克研究所克劳斯·罗珀斯(Claus Ropers)教授担任共同通讯作者。
图 | 相关论文(来源:Science)
同期 Science 也发表了荷兰原子和分子物理学研究所阿尔伯特·波尔曼(Albert Polman)教授、与西班牙光子科学研究所哈维尔·加西亚·德阿巴霍(F. Javier Garcia de Abajo)教授共同撰写的观点文章[4],点赞称这是一项结合了自由电子和非线性光学的颠覆式创新。
下一步,杨宇嘉等人将针对其他非线性集成光学器件和动力学进行自由电子探测,比如探测片上激光器、光放大器、暗孤子和超连续光谱等。
与此同时,他也希望在完成博后研究之后,能回到国内建立一间能够达到世界领先水平的、探索电子显微镜和光子学芯片的交叉研究型实验室。
参考资料:
1. Henke, J.-W. et al. Integrated photonics enables continuous-beam electron phase modulation. Nature 600, 653–658 (2021).
2. Feist, A. et al. Cavity-mediated electron-photon pairs. Science 377, 777–780 (2022).
3. Yang, Y. et al. Free-electron interaction with nonlinear optical states in microresonators. Science 383, 168–173 (2024).
4. Polman, A. & García de Abajo, F. J. Electrons catch light pulses on the fly. Science 383, 148–149 (2024).
排版:刘雅坤
LED、太阳能电池等光电子器件都有哪些研究与应用?
文/万物知识局
编辑/万物知识局
随着科技领域的不断创新与发展,LED、太阳能电池等光电子器件的研究和应用也逐渐引起了人们的关注。
那么所谓的光电子器件到底是什么呢?
事实上,光电子器件是一类以光电转换为基础原理, 将光能转换为电能或者将电能转换为光能的电子器件。光电子器件的研究和应用在现代工业、科学等领域中扮演着重要角色。
其中,LED和太阳能电池是光电子器件中的两大代表,它们不仅具有高效、低能耗的特点,而且在环保、绿色能源等方面也有重要作用。
接下来我将从LED的基本原理、结构、优缺点、以及太阳能的基本原理和结构 等多个方面进行讲解光电子器件都有哪些研究和应用。
一、LED的基本原理
LED的发光原理是基于半导体材料的电致发光效应 ,其基本原理可以用能带结构来解释。能带是指半导体材料中电子的能量分布情况。在一个半导体材料中,通常存在一个价带和一个导带。
在常温下,半导体材料中的电子主要在价带中,而几乎没有电子在导带中。
当半导体材料受到外加电压或光照射时,价带中的电子获得足够的能量跃迁到导带中,形成电子空穴对。当这些电子空穴对再次复合时 ,将释放出能量,即产生光子,从而实现电光转换。
二、LED的结构
LED的结构主要由以下几部分组成:P型半导体区、N型半导体区和活性层 。其中,P型半导体区和N型半导体区的区别在于,P型半导体区中含有大量的空穴,而N型半导体区中含有大量的自由电子。
活性层位于P型半导体区和N型半导体区之间,是LED的主要发光区域。在工作时,P型半导体区和N型半导体区 之间施加外加电压,使得P型半导体区和N型半导体区中的电子和空穴得以复合并产生光子。
因此,LED的发光效果取决于材料的选择和层次的设计。
此外,LED还包括透镜、电极等部分,透镜用于调节发光角度和亮度,电极用于连接LED和外部电源。在实际应用中,LED还需要通过散热装置等方式 来保证其稳定工作和延长寿命。
三、LED灯的优缺点
LED作为一种新型绿色光源,具有以下优点:
首先是高效。LED的光电转换效率高,其光电转换效率可达到70%-80% ,比传统白炽灯高10倍以上。
然后是功率方面。LED的功率低,可以将能量直接转化为光能,而不产生热能,因此能够大幅度降低能源消耗。
其次是寿命优势。LED具有长寿命、抗震动、抗振动、抗冲击 等特点,可以适应各种复杂环境。
最后则是环保方面。LED不含汞、铅等有害物质,不会产生紫外线和红外线,对环境没有污染。
然而,凡事都是两面性的。多种优势的LED也存在一些难以忽视的缺点
首先是成本问题。由于LED的制造需要高纯度半导体材料和复杂的制造工艺 ,因此其成本较高。
其次是光谱限制。LED的发光波长有限,不能覆盖整个光谱范围,可能会对特定应用产生限制。
最后是热管理困难。由于LED在工作时会产生热量,需要进行散热处理,否则可能会影响其工作效率和寿命。
四、太阳能电池的基本原理和结构
太阳能电池的基本原理是光生电效应 ,即在半导体材料中吸收光子能量后,会使材料中的电子跃迁到导带中,从而产生电流。具体来说,太阳能电池通常采用p-n结构的半导体材料,其中p型半导体和n型半导体之间形成了一个电势垒。
当光线照射到p-n结处时,光子会激发p-n结中的电子 ,使其跃迁到导带中,从而形成电流。由于p-n结的电势垒的存在,电流只能沿着一个方向流动,从而产生了直流电。
而太阳能电池的基本结构则是由多个p-n结组成,其中p型半导体和n型半导体通过P-N结连接。
在太阳能电池的正面,通常会覆盖一个透明的导电玻璃 ,以便太阳光可以穿过玻璃并照射到电池的表面。
在电池的背面,则会安装一个金属导体,以便电子可以流回到电池的正面,并输出电能。太阳能电池的结构也可以根据不同材料和应用场景 进行不同的设计和改进。
五、光电子器件技术的研究热点
首先是新型材料的研究。光电子器件的性能和应用受材料的影响很大。因此,新型光电材料的研究一直是光电子器件技术研究的热点之一。
目前,石墨烯、二维材料、有机无机杂化材料等新型材料被广泛研究和应用 ,它们在电荷传输、光电转换等方面具有独特的性能,有望成为光电子器件材料的主流。
其次是光伏技术的研究。太阳能光伏技术是光电子器件技术中的重要分支,近年来受到广泛的关注和研究。
其中,以高效、低成本为目标的薄膜太阳能电池技术和有机太阳能电池技术成为研究热点。这些技术在材料、器件结构、制备工艺等方面都有很大的创新空间。
然后是光电子器件集成技术的研究 。这种技术是实现光电子器件功能化和多功能化的关键。
当前,集成光电子器件的研究主要集中在三个方面:首先是在同一晶片上实现多种光电子器件的集成;其次是在不同晶片之间实现光电子器件的互联和集成;最后则是实现光电子器件和微纳机械器件的混合集成。
六、光电子器件技术的发展趋势
增强光电转换效率,它是衡量光电子器件性能的重要指标之一。未来的光电子器件技术研究将以提高光电转换效率为主要目标 ,采用新型材料、新型器件结构和制备工艺等手段来实现。
然后是实现光电子器件的高度集成。随着信息技术的发展,光电子器件的集成度也越来越高。未来,将会出现更多的光电子器件和功能的集成,包括光电子传感器、光电子芯片和光电子系统 等。这将它的应用提供更多的可能性。
其次是实现低成本和高性能。随着光电子器件技术的不断发展,实现低成本和高性能也成为技术发展的重点之一。
未来,随着新型材料的出现和新型器件结构的研究,光电子器件的制备成本将不断降低,同时其性能也将不断提高。
最后则是实现可穿戴和可重复使用 。未来光电子器件将通过对新型材料、器件结构和制备工艺的研究,可以制造出更加轻便、柔性和可穿戴的光电子器件,并且这些器件可以被重复使用。
七、光电子器件在现代社会中的重要性和作用
首先光电子器件在通信领域中扮演着至关重要的角色。以光纤通信为例,光电子器件可以将光信号转换成电信号,使信号能够在光纤中传输。
另外,它还可以将电信号转换成光信号 ,使信号在接收端被转换成原始的信息。除了光纤通信,光电子器件还广泛应用于激光通信、无线光通信等通信领域,极大地提高了通信的传输速度和效率。
然后便是它在能源领域中的重要作用。太阳能电池作为一种典型的光电子器件,就可以将太阳能转换成电能。随着能源问题的日益突出,太阳能电池成为了解决能源问题的重要手段。
此外,光电子器件还被广泛应用于LED灯、荧光屏幕等领域,为人们的日常生活提供了便利。
最后,光电子器件在娱乐领域中也扮演着重要的角色。例如,LED灯可以用于舞台照明和城市夜景装饰,增强了观众的视觉体验。此外,光电子器件还可以被应用于游戏设备、音响设备等娱乐设备中。
八、光电子器件未来的发展前景
首先是效率方面。随着科技的发展,光电子器件的效率也会不断提高。例如,在太阳能电池领域中,新的材料和设计可以提高太阳能电池的转换效率 ,从而使太阳能的利用更加高效。
然后是体积方面。未来的光电子器件将会越来越小,从而可以被应用于更广泛的领域。
例如,随着微电子技术的发展,人们可以制造出更小、更快、更强大的光电子器件,这些器件可以被应用于传感器等领域。
最后是应用方面。未来光电子器件的应用范围将会不断扩大,在更多的领域都能得到有效利用。例如,在智能家居领域中,光电子器件可以被应用于智能灯具、智能门锁等设备中。
九、未来光电子器件面临的挑战
在未来光电子器件所面临的问题中,首当其冲的还是我们熟知的成本问题。目前光电子器件的成本较高,这限制了其在大规模应用中 的发展。
未来需要解决成本问题,使光电子器件的价格更加合理,才能让其在更广泛的领域中得到应用。
然后就是其在发展中所面临的技术限制。例如,在太阳能电池领域中,目前的太阳能电池效率已经接近极限,需要开发新的材料和技术来提高太阳能电池的效率。
其次是环境问题。光电子器件的制造过程需要大量的能源和材料 ,而这些能源和材料的生产和处理会对环境造成一定的影响。未来需要探索更环保的光电子器件制造方法,以减少对环境的影响。
最后也是最主要的便是安全方面的问题。随着光电子器件的普及,它的安全问题也越来越受到关注。例如,智能家居设备中的光电子器件可能会被黑客攻击,从而造成安全问题。未来需要加强光电子器件的安全性能,以保护用户的隐私和安全。
所以光电子器件是一类重要的电子器件,其中LED和太阳能电池是最为常见的光电子器件之一。为了推动光电子器件的健康发展,需要加强技术研发,提高生产效率,探索更环保的制造方法,加强安全保障等方面的工作。
[1]信息技术中的光电子器件[J]. .中国计量学院学报,2001(02)
[2]光电子器件国家工程研究中心[J]. .红外,1997(01)
[3]光电子器件的封装技术[J]. 郭树田.电子与封装,2002(04)
[4]半导体光电子器件及其应用[J]. 王晓雄.大众标准化,2020(13)
[5]光电子器件 中国科学家谈科学[J]. 曹则贤.科学观察,2008(02)
[6] LED商用荧光粉的发光特性研究与应用分析[J]. 王忆;王梦霞;俞子喆;罡一帆;周勤勤;王欣月.信阳师范学院学报(自然科学版)
相关问答
【 光电 效应实验和康普顿实验都证明了光具有______(填“粒子...[最佳回答]光电效应实验和康普顿实验都证明了光具有粒子性;发生光电效应时,有光电子逸出,则锌板失去电子带正电,所以验电器带正电;若改用强度较弱的紫外线照射...
【请你举出一个利用动物本能或运用仿生学造福人类的事例】作业帮[回答]雷达仿造蝙蝠的超声波制造而成首先发现青蛙的眼睛和其他动物不一样,它的眼睛比较突出,科学家就对青蛙有了兴趣,他们不断研究,终于研究出青蛙只能看...
为什么光在照到金属表面时会激起 光电子 ?因为光电效应,其中的光电子就是电子,即光照射到金属表面时,金属会失去电子而带正电荷,该现象就叫光电效应。发生光电效应的时间极短,在纳秒级,比如光电门...
光 器件的三种类型?2、光电照明器件例如LED灯具,或者说其它发光照明灯具,或发光装饰灯具。终上,可以理解为,产品需要电转光,或光转电,或其它光电相关功能,就属于光电器件中。...
光电子技术 优缺点。?优点是是体积小、重量轻、可靠性高、使用寿命长、功耗低,电源故障率低、使用安全,维修成本低等。因此应用领域日益扩大。目前它的应用领域包括光存储、激光打...
光 反应合成什么?光反应又称为光系统电子传递反应(photosythenicelectron-transferreaction)。在反应过程中,来自于太阳的光能使绿色生物的叶绿素产生高能电子从而将光能转变...
光 子打到 电子 上会发生什么,什么原理反射的,应该被 电子 吸收啊?光传播能量是不争之事实。物质传播能量是通过质点接触传递。是不是一切能量传递必须通过质点接触?当把质点接触作为能量传递之充要条件来使用时,光波才必须转...
光电子 和微电子有什么区别?光电子和微电子是电子学的两个重要分支,它们有以下区别:1.研究对象不同:光电子主要研究光子与电子的相互作用,涉及到光与电子的发射、吸收、传导等过程。而...
光电子 和微电子有什么区别?光电子技术是继微电子技术之后,近十几年来迅速发展的新兴高技术,它集中了固体物理、导波光学、材料科学、微细加工和半导体科学技术的科研成就,成为电子技术与...
【20世纪80年代,面对世界 新技术 革命的挑战.我国实施了那项高...[最佳回答]863计划1986年3月,面对世界高技术蓬勃发展、国际竞争日趋激烈的严峻挑战,邓小平同志在王大珩、王淦昌、杨嘉墀和陈芳允四位科学家提出的“关于跟踪...