您从未听说过的11个最伟大的真空电子管,在六七十年代独领风骚
在我们之前的认知中,只有老式收音机才使用真空电子管,这是一篇让人大开眼界的文章,本文作者是真空电子管领域的专家,他给我们介绍了在过去60或70年代中无疑改变了世界的真空管。
您从未听说过的11个最伟大的真空管
这些真空装置在冷战期间站岗,先进的粒子物理技术,治疗过癌症的患者,并使甲壳虫乐队在收音机里听起来不错。
文:卡特·M·阿姆斯特朗(Carter M. Armstrong)
在数以百万计的固态设备支撑的时代,您是否还要关心真空管?你绝对应该!对于丰富性,戏剧性和纯粹的光彩,很少有技术时间表可以与真空管的116年(且不断增长)历史相匹配。为了证明这一点,我整理了一个系列,这些真空管在过去60或70年代中无疑改变了世界。
而且,从很好的角度来看,您还会在这里找到一些太独特,太酷或太奇怪而默默无闻的消逝。
我的清单并不全面。在这里,您找不到像Nixie管或闸流管那样的充气玻璃器皿,没有“超高”脉冲功率微波设备,也没有阴极射线管。我特意省略了一些著名的电子管,例如卫星行波管和微波炉磁控管。而且我非常迷射频管,因此我忽略了音频管的广泛应用,一个值得注意的例外。
但是,即使在我选择的参数范围内,也有如此多惊人的设备,以至于很难只选择其中的11种。因此,这是我对某些有影响的电子管的特殊顺序不分先后。
1医用磁控管
Medical Mangnetron的照片图片:Teledyne e2v
如果要以紧凑的封装有效地产生相干射频功率,则无法击败磁控管。
磁控管在第二次世界大战中首次崛起,为英国雷达提供动力。磁控管在雷达中的使用在1970年代开始减弱,但这种管在工业,科学和医学应用中找到了新的生命,并一直延续到今天。
医用磁控管正是为此用途而发光的。在线性加速器中,它会产生高能电子束。当束中的电子被靶中的原子核偏转时(由具有高原子序数的材料(例如钨)组成),会产生大量X射线,然后可以将X射线定向杀死肿瘤中的癌细胞。1952年,伦敦哈默史密斯医院安装了首个用于放射治疗的临床加速器。一个2兆瓦的磁控管为3米长的加速器提供了动力。
继续开发大功率磁控管以满足放射肿瘤学的需求。此处显示的医用磁控管由e2v Technologies(现为Teledyne e2v)制造,产生的峰值功率为2.6 MW,平均功率为3千瓦,效率超过50%。它只有37厘米长,重约8公斤,小巧轻便,足以容纳放疗机的旋转臂。
2回旋管
Gyrotron的照片图片:核聚变/国际原子能机构
回旋管是1960年代在苏联设想的,是一种大功率真空装置,主要用于在核聚变实验(如ITER)中加热等离子体,该实验现在在法国南部进行。这些实验性反应堆可能需要高达1.5亿摄氏度的温度。
那么兆瓦级回旋管如何工作?这个名字提供了一个线索:它使用在腔体内的强磁场中旋转或旋转的高能电子束。(我们管的人们喜欢我们的-trons和-trodes。)旋转电子和腔体电磁场之间的相互作用产生了高频无线电波,这些无线电波被引导到等离子体中。高频波会加速等离子体中的电子,从而在此过程中加热等离子体。
产生1兆瓦平均功率的灯管不会很小。聚变回旋管通常高约2至2.5米,重约1公吨,其中包括6或7特斯拉超导磁体。
除了加热聚变等离子体外,回旋管还用于材料处理和核磁共振光谱学中。在美国军方的主动拒绝系统中,还对非致命人群控制进行了探索。该系统投射出相对较宽的毫米波光束,直径可能为一米半。光束旨在加热人的皮肤表面,产生灼烧感,但不会穿透或损坏下面的组织。
3迷你行波管
迷你行波管照片图片:L3Harris电子设备
顾名思义,行波管(TWT)通过电路中行进或传播的电磁波的电场与流动的电子束之间的相互作用来放大信号。
20世纪大多数TWT被设计为具有极高的功率增益,放大率达到100,000或更高。但是您并不总是需要那么多收益。输入mini TWT,如L3Harris Electron Devices的示例所示。迷你TWT的增益约为1,000(或30分贝),适用于需要40至200瓦范围内输出功率且需要小尺寸和低电压的应用。例如,以14 GHz的频率运行的40 W迷你TWT可以放在您的手掌中,重量不到半公斤。
事实证明,军事部门非常需要小型TWT。微型TWT在1980年代问世后不久,就被用于飞机和舰船的电子战系统中,以防御雷达制导导弹。在1990年代初期,设备设计人员开始将微型TWT与紧凑的高压电源集成在一起以为设备供电,并使用固态放大器来驱动设备。组合创建了所谓的微波功率模块或MPM。由于其体积小,重量轻和效率高,MPM放大器可立即用于诸如“捕食者”和“全球鹰”之类的军用无人机的雷达和通信发射器中,以及电子对策中。
4加速器速调管
加速器速调管照片图片:档案和历史办公室/ SLAC国家加速器实验室
速调管帮助开创了高能物理大科学时代。速调管将电子束的动能转换为射频能。该设备的输出功率比行波管或磁控管大得多。罗素(Russell)和西格德·瓦里安(Sigurd Varian)兄弟在1930年代发明了速调管,并与其他人一起创立了瓦里安(Varian Associates)进行销售。如今,瓦里安(Varian)的电子管业务在通讯和电力工业(Communications and Power Industries)上持续发展。
在速调管内部,由阴极发射的电子向阳极加速以形成电子束。磁场使光束在通过阳极的孔到达光束收集器时不会膨胀。在阳极和集电极之间是称为空腔谐振器的中空结构。高频信号被施加到最靠近阴极的谐振器,从而在腔体内建立了电磁场。当电子束通过谐振器时,该场对电子束进行调制,从而导致电子的速度发生变化,并且当电子向下游的其他空腔谐振器移动时,电子会聚束。大多数电子在通过最终谐振器时会减速,最终谐振器以高功率振荡。结果是输出信号远大于输入信号。
在1960年代,工程师们开发了速调管作为斯坦福大学正在建造的新型3.2公里线性粒子加速器的射频源。SLAC速调管的工作频率为2.856吉赫,并使用250千伏的电子束,产生的峰值功率为24兆瓦。为了获得高达500亿电子伏特的粒子能量,需要其中240多个。
SLAC速调管为真空管作为高级粒子物理和X射线光源设备的RF源的广泛使用铺平了道路。SLAC速调管的65兆瓦版本仍在生产中。速调管还用于货物筛选,食品灭菌和放射肿瘤学。
5环形棒行波管
环形杆行波管照片图片:L3Harris电子设备
仍然强大的一种冷战管是巨大的环形杆行波管。这种大功率灯管从阴极到集电极的距离超过3米,是世界上最大的TWT。北达科他州的Cavalier Air Force Station上有128个环形TWT,可为超强大的相控阵雷达提供射频信号。这种被称为“周边捕获雷达攻击特征系统”(PARCS)的440MHz雷达用于寻找向北美发射的弹道导弹。它还作为空间监视网络的一部分,监视空间发射和绕行物体。PARCS由GE于1972年建造,可以追踪地球上所有轨道物体的一半以上,据说它能够识别2,000英里(3218公里)范围内的篮球大小物体。
在距离阿拉斯加海岸约1900公里的偏远谢米亚岛上的相控阵雷达中,使用了甚至更高频率的环形棒管。雷达被称为“眼镜蛇戴恩”,它监视非美国弹道导弹的发射。它还收集有关低地球轨道的太空发射和卫星的监视数据。
在这个庞然大物中使用的电路称为环形棒,它由通过沿其长度重复的交替的条或棒连接的圆环组成。这种设置所提供的电子束在电子束上的电场强度要比花园式TWT高,后者的射频波沿螺旋形导线传播。环形管的场强较高,因此功率增益更高,效率更高。这里显示的管是雷神公司在1970年代初期开发的;现在由L3Harris Electron Devices制造。
6Ubitron
一个男人和Ubitron的照片照片:罗伯特·菲利普斯(Robert Phillips)
在“自由电子激光器”一词出现之前的十五年,有一个真空管以同样的基本原理工作-泛子,即“起伏束相互作用”的代表。
1957年泛素的发明是偶然发生的。加州帕洛阿尔托的通用电气微波实验室的工程师罗伯特·菲利普斯(Robert Phillips)试图解释为什么一个实验室的行波管发生振荡而另一个却没有。比较这两个灯管,他注意到它们的磁聚焦发生变化,这导致一个灯管中的光束摆动。他认为这种起伏可能会导致与波导中电磁波的周期性相互作用。反过来,这对于产生极高水平的峰值射频功率很有用。因此,泛素诞生了。
从1957年到1964年,菲利普斯(Phillips)及其同事制造并测试了各种泛子。此处显示的1963年照片是GE同事Charles Enderby手持的无核子磁铁。该灯管在70,000伏的电压下工作,在54 GHz时产生的峰值功率为150 kW,创下十年来的最高水平。但是资助泛光子工作的美国陆军在1964年停止了研发工作,因为没有天线或波导可以处理如此高的功率水平。
当今的自由电子激光器采用了与泛素相同的基本原理。实际上,为了表彰他在泛子上的开拓性工作,菲利普斯于1992年获得了自由电子激光奖。现在,安装在粒子加速器的大型光和X射线源中的FEL产生强大的电磁辐射,该电磁辐射用于探索化学键的动力学,了解光合作用,分析药物如何与靶标结合,甚至产生温暖而稠密的物质,研究气体行星的形成方式。
7激子管
Carcinotron的照片图片:CSF
法国管称为回旋加速器,是冷战时代另一个引人入胜的例子。与磁控管有关,它是由Bernard Epsztein于1951年在CompagnieGénéraledeTélégraphieSans Fil(CSF,现为Thales的一部分)上构思的。
像泛子一样,回旋加速器是为了解决传统电子管的振荡问题而诞生的。在这种情况下,振荡的源头可以追溯到射频电路沿电子束电子束的相反方向倒流的功率。Epsztein发现,振荡频率可以随电压而变化,因此获得了电压可调的“反向波”管的专利。
在大约20年的时间里,美国和欧洲的电子干扰器都使用电子回旋加速器作为其射频电源。此处显示的电子管是CSF在1952年制造的第一支电子管。它在S波段提供了200 W的RF功率,该功率从2 GHz扩展到4 GHz。
考虑到它们可以处理的功率水平,回旋加速器非常紧凑。包括其永久聚焦磁体的500W型号重量仅为8千克,尺寸为24 x 17 x 15厘米,其阴影小于鞋盒。
还有这个奇怪的名字吗?Thales Electron Devices的真空电子科学家Philippe Thouvenin告诉我,它来自希腊语karkunos,意为小龙虾。当然,小龙虾会向后游。
8双模行波管
双模行波管照片图片:诺斯罗普·格鲁曼
双模TWT是1970年代和80年代在美国开发的一种用于微波对抗雷达的奇异球微波管。这种管子既可以进行低功率连续波也可以进行大功率脉冲操作,它遵循一句古老的格言:两个比一个更好:它有两个光束,两个电路,两个电子枪,两个聚焦磁体和两个收集器,全部封装在一个真空封套中。
该电子管的主要卖点是它扩大了给定应用的用途,例如,一种对策系统可以在连续波和脉冲功率模式下运行,但只需一个发射器和一个简单的天线馈源。电子枪中较短的脉冲功率部分中的控制网格可以迅速将电子管从脉冲转换为连续波,反之亦然。谈论将许多功能打包到一个小包装中。当然,如果真空泄漏了,您将失去两种电子管功能。
此处显示的灯管是由雷神公司的功率管部开发的,该部于1993年被利顿电子设备公司收购。雷神公司/利顿公司以及诺斯罗普·格鲁曼公司制造了双模TWT,但众所周知,这种管很难批量生产,因此已停产。2000年代初期。
9多光束速调管
多光束速调管照片照片:Thales
正如我们许多人所学到的那样,功率等于电压乘以电流。为了从真空管中获得更多功率,可以增加真空管电子束的电压,但这需要更大的管和更复杂的电源。或者您可以提高电子束的电流,但这也可能会带来问题。为此,您需要确保设备可以支持更高的电流,并且所需的磁场可以安全地将电子束传输通过电子管电路,即电子管与电子束相互作用的部分。
此外,由于功率转换所需的电子束受到影响,电子束的效率通常会随着电子束电流的增加而下降。
如果要谈论具有单个电子束和单个电路的常规真空管,则所有这些警告都适用。但是,如果您使用多束光束,这些束光束来自多个阴极并经过公共电路,该怎么办?即使单个电子束电流适中,总电流仍会很高,而器件的整体效率不会受到影响。
1960年代,在美国,苏联和其他地方研究了这种多光束装置。美国的工作逐渐减少,但苏联的活动仍在继续,从而成功部署了多光束速调管或MBK。苏联将其中许多电子管用于雷达和其他用途。
上面显示了MBK的现代示例,该示例由法国Thomson Tubes Electroniques公司(现已成为Thales的一部分)于2001年生产。该MBK是为德国电子同步加速器(DESY)开发的。欧洲X射线免费电子激光设备使用的是更高版本。该管有七束,总电流为137安培,峰值功率为10 MW,平均功率为150 kW;它的效率大于63%。相比之下,汤姆森(Thomson)开发的单束速调管可提供5 MW峰值功率和100 kW平均功率,效率为40%。因此,就其放大能力而言,一个MBK相当于两个传统的速调管。
10Coaxitron
Coaxitron的照片图片:RCA
到目前为止,我所描述的所有电子管都是专家所说的束波装置(在磁控管的情况下是束流波)。但是在这些设备问世之前,电子管具有栅格,栅格是透明的屏幕状金属电极,插在电子管的阴极和阳极之间,以控制或调节电子流。根据管子有多少个栅格,它被称为二极管(无栅格),三极管(一个栅格),四极管(两个栅格)等等。低功率管被称为“接收管”,因为它们通常用于无线电接收器或开关中。(在这里,我应该注意的是,我所说的“管子”被英国人称为“阀门”。)
当然,还有更高功率的电网管。您猜对了,发射管用于无线电发射器中。后来,高功率栅格管进入了许多有趣的工业,科学和军事应用。
三极管和高阶栅极管均包括阴极,电流控制栅极和阳极或集电极(或极板)。这些管中的大多数是圆柱形的,中心电极通常是细丝,被电极围绕着。
由RCA在1960年代开始研发的coaxitron,是圆柱设计的独特组合。电子从圆柱状同轴阴极径向流到阳极。但是,共辐射管的阴极没有一个单一的电子发射器,而是沿其圆周分割的,有许多加热的灯丝作为电子源。每个灯丝形成自己的电子小束。因为子束径向流向阳极,所以不需要磁场(或磁体)来限制电子。因此,考虑到它的兆瓦级功率水平,它是非常紧凑的。
一个1兆瓦,425 MHz的同轴加速器重130磅(59千克),高24英寸(61厘米)。虽然增益适中(10至15 dB),但作为紧凑型超高频功率增强器,它仍然是一种动力。RCA设想将同轴加速器作为驱动RF加速器的来源,但最终在高功率UHF雷达中找到了家。尽管近来,同轴设备已取代了同轴加速器,但某些仍在传统雷达系统中使用。
11德律风根音频管
图片:Thump / Soundgas
一个重要的传统带网格管位于与速调管和回旋管等兆瓦级野兽的功率/频谱相反的一端。在音频工程师和唱片艺术家的推崇下,Telefunken VF14M被用作弗兰克·辛纳屈(Frank Sinatra)和甲壳虫乐队的制片人乔治·马丁爵士(Sir George Martin)所钟爱的传奇Neumann U47和U48麦克风的放大器。有趣的事实:伦敦Abbey Road Studio展出了一个Neumann U47麦克风。VF14M电子管名称中的“ M”表示它适合麦克风使用,仅授予通过Neumann筛选的电子管。
VF14是五极管,这意味着它具有五个电极,包括三个栅格。但是,当用在麦克风中时,它就像一个三极管一样工作,其两个栅格捆绑在一起并连接到阳极。这样做是为了充分利用三极管的优越音质。VF14的加热器电路以55 V的电压运行,该电路加热阴极以使其发射电子。该电压经过选择,以便可以将两个电子管串联连接在110 V主电源上,以降低电源成本,这在战后德国。
如今,您可以购买VF14M的固态替代品,甚至可以模拟电子管的55 V加热器电路。但是它能复制那种温暖可爱的电子管声音吗?关于这一点,音频势利者将永远不会同意。
这篇文章刊载在2020年11月的印刷版上,标题为《您从未听说过的9个最伟大的真空管》。
source:ieee.org
小叔来啦:
本文作者简介:
真空管专家的生活
Carter M. Armstrong的照片
拍摄:迈克尔·马丁
“如果您告诉我我会在真空管上度过我的职业,那我会说,‘没办法。太疯狂了!' ”
卡特·阿姆斯特朗(Carter M. Armstrong)这样说,实际上他在真空设备上工作了40多年。它开始于研究生院,当时他的博士学位是马里兰大学的顾问将他转向了电子束。在北卡罗来纳州立大学,利顿州诺斯罗普·格鲁曼公司,海军研究实验室以及最近在加利福尼亚托伦斯的L3Harris任职期间,他一直担任公司电子设备部门高级开发总监。
阿姆斯特朗说,在整个过程中,这项工作一直在智力上激发和情感上的回报。他说:“解决棘手的问题很好。” “物理学很难,工程很难,而且都是相互关联的。并不是每个人都能做这种工作,但它确实会渗入您的血液。”
在这张照片中,IEEE院士Armstrong拥有他协助开发的两种设备:毫米波微型行波管和微波功率模块。他说,除了微波炉中无处不在的磁控管和通信卫星中的行波管之外,真空设备仍然可以在令人惊讶的广泛应用中找到自己的方式,在这些应用中,“您需要高效,大功率和宽放大带宽”。这些应用包括癌症治疗,聚变反应堆,工业加热,粒子加速器,雷达,导弹防御和电子战。
在阿姆斯特朗的文章中,几乎所有的管子都是他在职业生涯中曾帮助设计或接触过的,但根据他的儿子德里克(Derek)的推荐,他也加入了其中。那就是Telefunken VF14M,这是一种在声望很高的Neumann U47和U48麦克风中使用的专用音频管。几十年来,包括Ella Fitzgerald,Frank Sinatra和Beatles在内的许多录音师都喜欢这些麦克风。
“我是甲壳虫乐队的忠实粉丝,所以我很乐意加入其中。”阿姆斯特朗说。
到底什么是电子管(真空管)?
1883年,著名发明家托马斯·爱迪生(Thomas Edison) 在一次实验中,观察到一种奇怪现象。
当时,他正在进行灯丝(碳丝)的寿命测试。在灯丝旁边,他放置了一根铜丝,但铜丝并没有接在任何电极上。也就是说,铜丝没有通电。
碳丝正常通电后,开始发光发热。过了一会,爱迪生断开电源。他无意中发现,铜丝上竟然也产生了电流。
爱迪生没有办法解释出现这种现象的原因,但是,作为一个精明的“商人”,他想到的第一件事,就是给这个发现申请专利。他还将这种现象,命名为“爱迪生效应” 。
爱迪生
现在我们知道,爱迪生效应的本质,是热电子发射。也就是说,灯丝被加热后,表面的电子变得活跃,“逃”了出去,结果被金属铜丝捕获,从而产生了电流。
爱迪生申请专利之后,并没有想到这个效应有什么用途,于是将其束之高阁。
1884年,爱迪生电光公司的技术顾问、英国物理学家约翰·安布罗斯·弗莱明 (John Ambrose Fleming)访问美国,与爱迪生进行会面。爱迪生向弗莱明展示了自己发现的爱迪生效应,给弗莱明留下了深刻的印象。
弗莱明
这个弗莱明,大家应该也比较熟悉。他是一个电学专家,也是一个电机工程师,我们中学经常使用的右手定则,就是他发明的。
除了传统电学之外,弗莱明其实还有一个强项,那就是无线电磁学。他年轻的时候,曾经师从麦克斯韦,专门学习无线电磁理论。麦克斯韦临终前上课,只有两个学生来听,其中一个,就是弗莱明。
弗莱明观摩了爱迪生效应的演示后,也没有想到这个效应到底能用来干啥。事实上,等到他真正用到它,已经是十几年后。
1896年,意大利人伽利尔摩·马可尼(Guglielmo Marconi) 成功取得了世界上第一个无线电报系统专利,从而将人类带入无线通信时代。
马可尼
1899年,马可尼决定尝试横跨大西洋的远程无线电通信。为了完成这个壮举,他找来了弗莱明,和他签约,请他帮忙改进自己的无线电发射机和接收机。
弗莱明也确实没有辜负马可尼的期望,大幅改进了马可尼的设计,帮助实现了跨大西洋无线通信实验。(可惜,马可尼刻意对外隐瞒了弗莱明的贡献,还“忘记”了自己承诺要给弗莱明的500股股票奖励,把弗莱明气得半死。)
弗莱明在改进无线通信系统的时候,遇到了很多技术挑战。其中,最大的挑战,就是无线信号的接收。
简单来说,就是在接收端,如何检波信号 ,放大信号 ,让信号能够被完美解读。
放大信号大家都懂,那什么是检波信号呢?
所谓信号检波,其实就是信号筛选。天线接收到的信号,是非常杂乱的,什么信号都有。我们真正需要的信号(指定频率的信号),需要从这些杂乱信号中“过滤”出来,这就是检波。
想要实现检波,单向导通性(单向导电)是关键。
大家都知道,无线电磁波是高频振荡,每秒高达几十万次的频率。无线电磁波产生的感应电流,也随着“正、负、正、负”不断变化,如果我们用这个电流去驱动耳机,一正一负就是零,耳机就没办法反应出信号。
采用单向导电性,正弦波的负半周 就没有了,全部是正的,电流方向一致,把高频过滤掉之后,耳机就能够轻松体现出电流的变化。
去掉负半周,电流方向变成一致的,容易解读
在这里,我要先给大家介绍一样东西——矿石检波器 。
1874年,德国科学家卡尔·布劳恩 (Karl Ferdinand Braun)发现,有一些天然矿石(金属硫化物)具有电流单向导通的特性,可以用于整流(将交流电变成直流电)。
1894年,英属印度物理学家贾格迪什·钱德拉·博斯 (Jagadish Chandra Bose)基于卡尔·布劳恩的发现,利用方铅矿(硫化铅)的单向导电性,制成了世界上第一个检波器——矿石检波器 。
1900年,美国人格林里夫·惠特勒·皮卡德 (Greenleaf Whittier Pickard),基于矿石检波器,成功制造了世界上第一个矿石收音机。这为后来无线电广播的迅速普及奠定了基础。
弗莱明在研究如何改进无线电接收机的时候,采用了矿石检波器。但是,他想起了之前的爱迪生效应,他想到——是不是可以基于爱迪生效应的电子流动,设计一个新型的检波器呢?
就这样,1904年,世界上第一只真空电子二极管 ,在弗莱明的手下诞生了。当时,这个二极管也叫做“弗莱明阀”。(真空管,vacuum tube,也就是电子管,有时候也叫“胆管”。)
弗莱明发明的二极管
弗莱明的二极管,结构其实非常简单,就是真空玻璃灯泡里,塞了两个极:一个阴极(Cathode),加热后可以发射电子;一个阳极(Anode),接收电子。
旁热式二极管
玻璃管里之所以要抽成真空,是为了防止发生气体电离 ,对正常的电子流动造成影响,破坏特性曲线。(抽成真空,还可以有效降低灯丝的氧化损耗。)
二极管的出现,解决了检波和整流需求。但是,它还有改进的空间。
1899年,马可尼应邀到美国做无线电通讯表演。他的表演,吸引了一个年轻人的关注。这个年轻人,就是刚刚获得博士学位的德福雷斯特 (De Forest Lee)。
德福雷斯特
德福雷斯特为马可尼的无线电感到着迷。于是,他投递简历,想要加入马可尼的公司。结果,遭到拒绝。
被拒绝之后,德福雷斯特没有放弃,而是继续研究无线电通信。他的目光,放在了弗莱明的二极管上。
1906年,德·福雷斯特在真空二极电子管里,巧妙地加了一个栅板(“栅极”),发明了真空三极电子管 。
德·福雷斯特发明的三极管
栅板的主要作用,是控制电流。
栅极上很小的电流变化,能引起阳极很大的电流变化,而且,变化波形与栅极电流完全一致。所以, 三极管有信号放大的作用 。
现在看来,真空三极管的发明,是电子工业领域的里程碑事件。
这个小小的元件,集检波、放大和振荡三种功能于一体,为电子技术的发展奠定了基础。
一开始的三极管是单栅,后来变成了两个板子夹在一起的双栅,再后来,干脆变成了整个包起来的围栅
真空管
真空三极管是那一时期电子工业的心脏。基于它,我们才有了性能越来越强大的广播电台、收音机、留声机、电影、电台、雷达、无线电对讲等。
真空管收音机的内部构造(可以看到很多个真空管)
德·福雷斯特发明了三极管之后,很快陷入与弗莱明以及马可尼公司的专利官司。
双方互相起诉,弗莱明认为德·福雷斯特侵犯了自己的二极管专利,而德·福雷斯特则认为自己的改进很大,足以形成新的专利。官司打了很久,最终,双方达成和解,相互授权对方生产二极管(三极管)。
三极管诞生后,因为能放大信号,所以受到了美国通信巨头AT&T公司的关注。
当时,AT&T公司打算建造一条连接美国东西海岸的跨大陆电话线,急需解决信号放大问题。在没有三极管之前,放大信号只能用中继器,但是中继器的效果不好,且成本较高。
三极管的出现,给AT&T公司带来了新的选项。
1913年7月,经过一番讨价还价,AT&T公司以39万美元的价格,买下了德·福雷斯特的三极管专利。
再后来,AT&T认识到电子管这类基础研究对于产业发展的重要作用,于1925年正式成立了“贝尔电话实验室公司”。这个公司,就是后来大名鼎鼎的贝尔实验室。
1912—1920年,美国西电公司(Western Electric,简称WE)研制出具有实用性的球形电子三极管,发烧友称之为“洋葱头”电子管。
1924年,美国RCA公司(Radio Corporation of America)研制出效率较高的三极真空电子管。这种古典管在第一次世界大战中得到广泛应用。
1919年,德国的肖特基提出在栅极和正极间加一个帘栅极的想法。这个想法被英国的朗德在1926年实现。这就是后来的四极管。再后来,荷兰的霍尔斯特和泰莱根又发明了五极管。
到了20世纪40年代,计算机技术研究进入高潮。人们发现,电子管的单向导通特性,可以用于设计一些逻辑电路(例如与门电路、或门电路)。于是,他们开始将电子管引入计算机领域。
1946年,宾夕法尼亚大学的工程师埃克特和物理学家毛希利等人,共同研制出了真正意义上的第一台通用型电子计算机——埃尼阿克(ENIAC) 。
大家应该都知道埃尼阿克。这台钢铁巨兽,使用了18000多只电子管,重130多吨,占地面积170多平方米,每秒钟可作5000多次加法运算。之前的计算机需要2小时完成的计算任务,ENIAC只需要3秒钟,在当时堪称奇迹。
上世纪40-50年代,电子管的发展达到了高潮。但是,随着技术的进步,人们发现,电子管已经无法满足产品设计的需求。
一方面,电子管容易破损,故障率高,另一方面,电子管需要加热使用,很多能量都浪费在发热上,也带来了极高的功耗。
所以,人们开始思考——是否有更好的方式,可以实现电路的检波、整流和信号放大呢?
答案是肯定的,于是人们开启了晶体管的新纪元。
参考文献:
1、Leo的微电子学习笔记,黎翱白Leobai,B站;
2、从上海发迹的中国收音机百年史,戴辉;
3、从电子管到晶体管,解码科技史,央视;
4、真空二极管的工作原理,IC先生;
5、第一块晶体管背后的故事,中科大胡不归;
转载内容仅代表作者观点
不代表中科院物理所立场
如需转载请联系原公众号
来源: 鲜枣课堂
编辑:老头
相关问答
1912年阿诺德和蓝米尔研制出高 真空电子管 ?1912年,美国通用电气公司的物理化学家朗缪尔对早期的电子管进行改造,设计制造出高真空电子管,两年后美国电话电报公司在美国物理学家阿诺德的领导下,研制出高...
真空电子管 放大器原理?原理如下;在真空状态下,灯丝的热辐射会逐渐加热了阴极的金属片,阴极金属片温度达到一定程度后(摄氏800度左右)。虽然当电子管的灯丝加上电,灯丝的温度会提...
真空 环境能摩擦生热吗?摩擦会产生热,这与相互摩擦的物体周围有没有空气没有关系。摩擦热的产生不需要空气或空气中某一类分子的参与,因此你即使是在月球上摩擦两块木头,它一样会产...
电子管 放大原理?原理如下;在真空状态下,灯丝的热辐射会逐渐加热了阴极的金属片,阴极金属片温度达到一定程度后(摄氏800度左右)。虽然当电子管的灯丝加上电,灯丝的温度会提...原...
什么是 真空 - Snowbibabo 的回答 - 懂得空气压力低于一个标准大气压的状态皆为真空,一个标准大气压以上为正压,一个标准大气压以下值为负压,所以真空是负压。本义是指虚空,即一无所有的空...
什么地方用到电流源? - 懂得理想化概念。任何电源都可看作电压源与电阻的串联,也可以看作是电流源与电阻的并联。至于何时看作电压源?何...任何电源都可看作电压源与电阻的串...
信息 真空的 概念?真空是指没有任何实物粒子存在的空间,地球以及星球中间的广大太空就是真空。物理学上的真空,是指稀薄的气体状态,又可分为高真空、中真空和低真空。一般是用...
物理热学 电子管的真空 率约为1.0*10^(-5)mmHg,设气体分子的有...[最佳回答]我的解答见附图
知道 电子管的真空度 为0.00001mmHg求压强_作业帮[最佳回答]绝对压强=ρgh=13.6*10^3*9.8*0.00001*10^-3
真空 管计算机原理?真空管计算机是一种使用真空管来进行计算和处理数据的计算机系统。它的基本原理是将电流信号传送到不同的真空管中,在各个管之间进行逻辑判断、运算处理、存储...