共轭电子应用 共轭(离域)效应的形成简介,原理介绍,特点,类别,举例及范围

小编 2024-10-06 电子应用 23 0

共轭(离域)效应的形成简介、原理介绍、特点、类别、举例及范围

一、简介

共轭效应 (conjugated effect) ,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子 (或p电子)分布发生变化的一种电子效应。凡共轭体系上的取代基能降低体系的π电子云密度,则这些基团有吸电子共轭效应,用-C表示,如-COOH,-CHO,-COR;凡共轭体系上的取代基能增高共轭体系的π电子云密度,则这些基团有给电子共轭效应,用+C表示,如-NH2,-OH,-R。H2C=CH2,π键的两个π电子的运动范围局限在两个碳原子之间,这叫做定域运动。

CH2=CH-CH=CH2中,可以看作两个孤立的双键重合在一起,π电子的运动范围不再局限在两个碳原子之间,而是扩充到四个碳原子之间,这叫做离域现象。

共轭效应

这种分子叫共轭分子。共轭分子中任何一个原子受到外界试剂的作用,其它部分可以马上受到影响。这种电子通过共轭体系的传递方式,叫做共轭效应。

二、特点

沿共轭体系传递不受距离的限制。

共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。共轭效应主要表现在两个方面。

①共轭能:形成共轭π键的结果使体系的能量降低,分子稳定。例如CH2=CH-CH=CH2共轭分子,由于π键与π键的相互作用,使分子的总能量降低了,也就是说, CH2=CH-CH=CH2分子的能量比两个不共轭的CH2=CH2分子的能量总和要低。所低的数值叫做共轭能。

②键长:从电子云的观点来看,在给定的原子间,电子云重叠得越多,电子云密度越大,两个原子结合得就越牢固,键长也就越短,共轭π键的生成使得电子云的分布趋向平均化,导致共轭分子中单键的键长缩短,双键的键长加长。

共轭效应是电子效应的一种。组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两个原子之间运动,而是发生离域作用,使共轭体系的分子产生一系列特征,如分子内能低、稳定性高、键长趋于平均化,以及在外电场影响下共轭分子链发生极性交替现象和引起分子其他某些性质的变化,这些变化通常称为共轭效应。共

共轭效应是指在共轭体系中电子离域的一种效应是有机化学中一种重要的电子效应.它能使分子中电子云密度的分布发生改变(共平面化、趋于平均),内能减少,键长趋于平均化,折射率升高,整个分子更趋稳定。

基本介绍

"共轭效应是稳定的"是有机化学的最最基本原理之一.但是,自30年代起,键长平均化,4N+2芳香性理论,苯环D6h构架的起因,分子的构象和共轭效应的因果关系,π-电子离域的结构效应等已经受到了广泛的质疑.其中,最引人注目的是Vollhardt等合成了中心苯环具有环己三烯几何特征的亚苯类化合物,Stanger等合成了键长平均化,但长度在0.143~0.148nm的苯并类衍生物。

(1999年),Stanger又获得了在苯环中具有单键键长的苯并类化合物。在理论计算领域,争论主要表现在计算方法上,集中在如何将作用能分解成π和σ两部分.随着论战的发展,作用能分解法在有机化学中的应用不断地发展和完善,Hückel理论在有机化学中的绝对权威也受到了挑战.为此,简要地介绍了能量分解法的发展史,对Kollma法的合理性提出了质疑.此外特别介绍了我们新的能量分解法,及在共轭效应和芳香性的研究中的新观点和新的思维模式。

三、原理介绍

正常共轭效应

又称π-π共轭。是指两个以上双键(或叁键)以单键相联结时所发生的 π电子的离位作用。

K.英戈尔德称这种效应为中介效应,并且认为,共轭体系中这种电子的位移是由有关各原子的电负性和 p轨道的大小(或主量子数)决定的。Y原子的电负性和它的p轨道半径愈大,则它吸引π电子的能力也愈大,愈有利于基团-X=Y从基准双键 A=B-吸引π电子的共轭效应(如同右边的箭头所示)。与此相反,如果A原子的电负性和它的p轨道半径愈大,则它释放π电子使其向Y原子移动的能力愈小,愈不利于向-X=Y基团方向给电子的共轭效应。中间原子B和X的特性也与共轭效应直接相关。 多电子共轭效应 又称 p-π共轭。在简单的多电子共轭体系中,Z为一个带有p电子对(或称n电子)的原子或基团。这样的共轭体系中,除Z能形成d-π共轭情况外,都有向基准双键A=B-方向给电子的共轭效应。Z原子的一对p电子的作用,类似正常共轭体系中的-X=Y基团。

超共轭效应

又称σ-π共轭。它是由一个烷基的C-H键的σ键电子与相

邻的半满或全空的p轨道互相重叠而产生的一种共轭现象。依照多电子共轭的理论,一个C-H键或整个CH3基团可作为一个假原子来看待。超共轭效应存在于烷基连接在不饱和键上的化合物中,超共轭效应的大小由烷基中α-H原子的数目多少而定,甲基最强,第三丁基最弱。超共轭效应比一般正常共轭效应和多电子共轭效应弱得多。

同共轭效应

又称p轨道与p轨道的σ 型重叠。甲基以上的烷基,除有超共轭效应外,还可能产生同共轭效应。所有同共轭效应,原是指β碳原子上的C-H 键与邻近的π 键间的相互作用。大量的化学活性和电子光谱的数据表明,在丙烯基离子和类似的烯羰基中,存在一种特殊的p-π或π-π共轭现象,即所谓同共轭效应:

在丙烯基离子中是烯碳原子上的p轨道,与正碳离子(β)上的空p轨道,作σ型的部分重叠;而在类似的烯羰基中,则是羰基碳原子的 p轨道与烯碳原子(β)的p轨道作σ 型的部分重叠: 这种共轭效应的影响比超共轭效应还小。烷基与烯链间的整个共轭效应,应包括超共轭效应和同共轭效应。

d-p共轭

又称d轨道接受共轭。是指一个原子的p轨道与另一个原子的 d轨道重叠而产生的一种共轭现象,例如有机硅化合物结构中的d-p共轭;在这里,苯环上的一部分 π电子云进入硅的3d轨道,形成d-p共轭,使硅原子与苯环结合得更牢。 此外,共轭效应还分静态和动态两类。静态共轭效应存在于未反应的共轭分子中,它是共轭分子中 π电子的高度活动性和 π电子发生位移的结果。动态共轭效应指在起化学反应的一瞬间,由于进攻试剂的作用,使共轭体系中π电子密度重新分布所引起的一种共轭现象。

诱导效应

诱导效应是指在有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应。诱导效应在有机化合物分子中,由于电负性不同的取代基(原子或原子团)的影响,使整个分子中的成键电子云密度向某一方向偏移,这种效应叫诱导效应。诱导效应的特征是电子云偏移沿着σ键传递,并随着碳链的增长而减弱或消失。

例如,醋酸是弱酸(pKi=4.76),醋酸分子中的α-碳原子上引入一个电负性比氢强的氯原子后,能使整个分子的电子云向氯原子偏移,结果增强了羟基中氢原子的质子化,使一氯醋酸成为强酸(pKi=2.86,酸性比醋酸强)。比较各种原子或原子团的诱导效应时,常以氢原子为标准。吸引电子能力(电负性较大)比氢原子强的原子或原子团(如-X (x表示卤素)、-OH、-NO2、-CN等)有吸电子的诱导效应(负的诱导效应),用-I表示,整个分子的电子云偏向取代基。

吸引电子的能力比氢原子弱的原子或原子团(如烷基)具有给电子的诱导效应(正的诱导效应),用I表示,整个分子的电子云偏离取代基。在诱导效应中,一般用箭头"→"表示电子移动的方向,表示电子云的分布发生了变化。诱导效应是一种短程的电子效应,一般隔三个化学键影响就很小了。

(此处已添加书籍卡片,请到今日头条客户端查看)

电子供体共轭效应调制 Zn²⁺还原反应,用于无隔膜锌水系电池!

锌基水系电池(ZAB)因其低成本、高容量和锌阳极对环境无害而受到广泛关注。然而,它们的应用仍然受到不受欢迎的锌枝晶的阻碍。尽管锌表面改性有望缓解枝晶现象,但仍需要较厚的隔膜(如玻璃纤维,250-700 μm)来防止枝晶穿刺,这就限制了电池的体积能量密度。

不同于传统的中界面加额外隔膜的做法,复旦大学王永刚团队提出了一种一体化的配体缓冲层(约 20 μm),以有效调节 Zn2+的转移和沉积行为。实验表征和密度泛函理论模拟进一步揭示,缓冲层中的儿茶酚基团可通过供电子 p-π共轭效应加速 Zn2+还原反应(ZRR),从而减少配位环境中的负电荷。在没有额外隔膜的情况下,这种精心制作的系统具有低于 28.2 mV 的低极化、在 5 mAcm-2对称电池条件下长达 4950 小时的使用寿命,以及前所未有的 99.2 Wh L-1体积能量密度(基于整软包电池)。无隔膜 "和"无枝晶突起 "的共轭效应与加速的 ZRR 过程可促进金属阳极的发展,并使高能水系电池受益。该成果《Electron-Donating Conjugation Effect ModulatedZn2+Reduction Reaction for Separator-Free Aqueous Zinc Batteries》为题发表在《Angewandte Chemie International Edition》。第一作者Sun Zhihao。

图 1.TA/CNF 配体缓冲层的形态和结构。(a) 有传统隔膜和无传统隔膜电池的示意图。(b) TA/CNF@Zn 侧视的扫描电镜图像和相应的元素图谱结果。(c) 显示电导率测量结果的光学图像。(d) TA/CNF 的顶视扫描电镜图像。(e) TA/CNF 和 CNF 的傅立叶变换红外图谱。(f) Zn2+ 与不同化合物(H2O 和 TA)的结合能。(g) pH 值对 TA 和 Zn2+ 之间配位模型的影响。

图 2.ZRR 过程研究。电极界面 Zn2+ 浓度演变的原位电化学数字全息图:(a)CNF@Zn,(b)TA/CNF@Zn。从红色到蓝色的演变意味着 Zn2+ 浓度的降低。Zn 金属阳极在 1mAh cm-2 和 5mA cm-2 下循环 100 次后的 SEM 图像:(c)CNF@Zn,(d)TA/CNF@Zn;相应循环 Zn 金属阳极的 3D CLSM 拓扑图:(e)CNF@Zn,(f)TA/CNF@Zn。(g) TA/CNF@Zn 阳极在不同容量下的 XRD 图。(h) (002) 和 (100) 衍射峰的相应强度比与沉积容量的关系。(i) H2O 和 TA 分子在 Zn (002) 晶面上的吸附能比较,插图显示了相应的吸附模型。

图 3.电化学评估。(a) 使用不同锌金属阳极的对称锌|||锌电池的循环性能。(b) 不对称锌||Cu电池的库仑效率。(c) 使用 TA/CNF@Zn 的对称锌||锌电池在 10 mAh cm-2 和 10 mA cm-2 下的循环性能测试。(d) 累积面积容量与电流密度的比较,与之前报道的作品相同。(e) 使用 CNF@Zn 和 TA/CNF@Zn 的对称锌电池的速率性能。(f) 沉积剥离过程中总极化电压的变化与施加的电流密度的关系。(g) 从 GITT 测试的充电过程中获得的选定脉冲/静止过程中极化电压的贡献。(h) 使用 CNF@Zn 和 TA/CNF@Zn 的对称 Zn||Zn 电池的Nyquist图。(i) 交换电流密度测量结果。(j) 极化电压与之前报告的工作的比较。

图 4.加速 ZRR 的机理。(a) TA-Zn2+(左)和 PEI-Zn2+(右)复合物的 LUMO、HOMO 等位面。(b) 配位后锌离子、TA 和 PEI 的原子电荷差。红色表示正电荷增加。(c) 配位相互作用调节 ZRR 的示意图。

图 5.实用性验证。(a) SF/VO2||Zn 和 GF/VO2||Zn 的充放电曲线和厚度测量的光学图片。(b) 本研究中电池的体积能量密度与厚度的比较,以及之前报道的研究。插图:由两个串联软包电池驱动的小型旋转电机的照片。(c) SF/VO2||Zn 在 5 A g-1 下的循环性能测试。

【结论】

总之,研究人员提出了一种一体化的配体缓冲层(约 20 μm)策略,以取代传统的界面层加超厚隔离层(即玻璃纤维,250-700 μm)类别,从而有效地调节 ZRR 过程。原位电化学数字全息图外实验表征表明,儿茶酚基团能使 Zn2+ 的转移和沉积均匀化。密度泛函理论模拟进一步揭示,儿茶酚基团的供电子共轭效应可通过减少 Zn2+ 配位环境中的负电荷来促进电子接收。因此,在没有额外隔膜的情况下,对称Zn||Zn电池能提供低于28.2 mV的低界面极化,在5 mA cm-2的实际电流密度下可运行4950小时,在10 mAh cm-2和10 mA cm-2的苛刻测试条件下可运行446小时。Zn||VO2 软包电池在 5 A g-1 的条件下可循环使用 2000 次,体积能量密度高达 99.2 Wh L-1。这些发现将对开发高度可逆的金属阳极和高能水系电池大有裨益。

注:本站转载的文章大部分收集于互联网,文章版权归原作者及原出处所有。文中观点仅供分享交流,如涉及版权等问题,请您告知,我将及时处理。

相关问答

【哪些基团的 共轭 作用是吸 电子 的,哪些是供 电子 的】作业帮

[最佳回答]共轭吸电子效应的有:-NO2,-C三N,-COOH,-CHO,-COR共轭给电子效应的有:-NH2(R),-NHCOR,—OH,—OR,-OCOR共轭吸电子效应的有:-NO2,-C三N,-COOH,...

什么是 电子共轭 _作业帮

[最佳回答]电子共轭是原子间成键的一种的方式吧,具体:1单双键交替出现的体系称为共轭体系.2在共轭体系中,由于原子间的相互影响而使体系内的π电子(或p电子)分...

【什么是 共轭 反应?如这两个反应2H2O+2e=H2+2OH-和H2O=1/2O2+...

[最佳回答]就是一个氧化还原中的氧化反应和还原反应这俩就互称共轭反应.比如电解或原电池中的俩个电极反应就都是共轭反应.一个得到电子的还原反应2H2O+2e=...

为什么 共轭 体系吸 电子 ?

吸电子基团、给电子基团是综合了诱导、共轭两种效应的结果。电负性强的原子具有吸电子诱导效应,比如—OH、—X。但这些基团往往有孤对电子,这就使得它们与不...

为什么吡啶的氮原子只给出一个 电子 参与 共轭 ?

吡咯,吡啶上的氮都是两个电子参与共轭,碳原子要与三个原子共价就有一个电子参与共轭,氧与一个原子共价则一个电子参与共轭如羰基,氧与两个电子共价时看情况一...

化学上的 共轭 体系是什么?_作业帮

[最佳回答]电子共轭是原子间成键的一种的方式吧,具体:1单双键交替出现的体系称为共轭体系.2在共轭体系中,由于原子间的相互影响而使体系内的π电子(或p电子)分...

共轭 效应的优缺点?

共轭效应,由于形成共轭π键而引起的分子性质的改变叫做共轭效应。共轭效应是电子效应的一种。组成共轭体系的原子处于同一平面,共轭体系的p电子,不只局限于两...

有机化学里面, 共轭 是什么意思?

共轭就是形成π键的电子不是固定在某两个原子之间运动,而是可以在三个以上的原子之间运动,也就是电子的运动范围扩大了。比如CH2=CHCH=CH2,CH2=CHCl,CH2=CHCH...

共轭 对化学位移的影响?

共轭效应,又称离域效应,是指共轭体系中由于原子间的相互影响而使体系内的π电子(或p电子)分布发生变化的一种电子效应。共轭效应主要表现在两个方面。...

吡啶中那个氮原子的 共轭 作用是吸 电子 还是给 电子 ? – 960化工...

吡咯,吡啶上的氮都是两个电子参与共轭,碳原子要与三个原子共价就有一个N原子的核外电子分布是:1S中2个电子,2S中2个电子,2Px中1个,2Py中1我来回答提交回答重...