电子气门技术应用 浅谈发动机电子气门控制技术(一)

小编 2025-04-05 电子应用 23 0

浅谈发动机电子气门控制技术(一)

前言

随着排放法规越来越严格,尤其是国六排放实施的最后期限逼近,提高发动机热效率和减少排放是各大汽车公司需要迫切解决的主要问题,而问题的关键所在就是发动机技术的革新。发动机燃烧所产生的动能通过传动机构转化为汽车的驱动力,如何提高动力、提高燃油经济性和减少尾气排放是所有发动机研发人员需要投入大量精力研究的重要课题。可变气门正时技术(Variable Valve Timing,简称VVT)是发动机技术革新过程中的关键技术,其原理是根据发动机的运行情况,通过控制进排气门的开闭时间和角度,调整进排气流量,使进入燃烧室的空气量达到最佳,油气混合气燃烧更充分,燃烧过程更平稳,热效率更高,排放物更少。

技术介绍

可变气门正时技术可分为连续可变正时技术和非连续可变正时两大类,包括可变气门相位和可变气门升程两种,按照控制形式可分为机械控制和电子控制(Valvetronic,如图1所示)两种方式,市面上车型常见的是VVT、VVT-i、VCT、CVCT、CVVT 、VVL、VVTL-i等称谓,这些车型都采用可变正时技术,但是VVL和VVTL-i也采用了可变气门升程技术。本文主要讲电子气门控制技术(Valvetronic)。

Valeo e-Valve系统

Valeo公司开发出了没有凸轮轴的可变气门正时机构——e-Valve系统,改变了传统的气门控制机构,只保留了进排气气门,开启和关闭气门不再由凸轮轴控制,而是由电磁控制系统依靠曲轴的位置信号单独控制每一个气门,该系统结构如图1所示,这种弹性的气门控制系统可以无限调整气门开启正时和气门打开的时间长短,其主要优势是像日产的VVEL系统那样通过控制气门升程控制进气。对于采用e-Valve系统的发动机不但可以按照驾驶者的需求来发挥发动机的最大动力性,同时还可以提高燃油经济性,降低NOx 、CO2和 HC排放,使废气再循环更加容易。在综合工况下,Valeo的e-Valve技术可使车辆油耗和排放降低5%-20%,同时还可以显著提高发动机低转速时的扭矩,改善低速驾驶操纵性。

图1 e-Valve系统

e-Valve系统的工作原理是:每个气门由两个弹簧和两个磁体控制,两个弹簧通过反向的相互作用力,控制气门的开启和关闭。两个磁体控制气门杆上的控制盘,下面的磁体负责开启气门,上面的磁体负责关闭气门。每个气门都由气门控制单元控制,包括2/42V转换器和冷却系统组成的电子管理系统。发动机可以通过气门的开启和关闭控制进排气量,取消节气门,从而减小或完全消除发动机在低转速运转时进气过程中的负压,降低燃油消耗;同时,发动机的怠速转速可以变得更低。e-Valve 系统更加精确和方便地控制发动机气门开启和关闭,提高低速扭矩和燃油经济性,降低排放。大排量发动机采用e-valve系统的同时如果结合断缸技术,在更经济的模式下运行时关闭相应气缸的气门,可实现更高的发动机燃烧效率和燃油经济性。

e-Valve系统的每个气门通过独立的磁体和弹簧控制气门。在气门开启时,气门被上部磁体释放,然后气门被上部弹簧的能量打开;下部磁体使气门保持打开在需要的时间长度,并完全压缩下部弹簧。利用相反的步骤关闭气门,气门被锁止在关闭位置,以减少磁体消耗的能量。在发动机低转速运转时气门的开关速度要快于凸轮轴控制,可以减少进气损失;当发动机不工作时气门同样被保持在关闭的位置。缺点是气门在到达行程上下点时会产生噪声,噪声取决于控制气门运动的速度。气门控制单元通过发动机自身的冷却系统来冷却,和标准的2V电源控制(通过变压器将42V转换为2V)。e-Valve系统不仅提升了发动机的燃烧效率,增加进气量,减少尾气排放,而且由于取消了凸轮轴配气机构,可以有效降低发动机体积和重量,使发动机舱更容易更容易布置。

宝马Double-VANOS/Valvetronic技术

宝马Double-VANOS双凸轮轴可变气门正时系统,是应用在BMW M3上的世界首创技术。VANOS系统是一个由发动机管理系统操纵的液压和机械相结合的凸轮轴控制系统。该系统的优点是可以根据发动机运行状态,通过调整凸轮轴与曲轴相对位置对进排气门正时进行无级调节,并且不受油门踏板开度和发动机转速的影响。采用该系统不仅可以提高低速扭矩,而且可以在高速达到最佳功率。此外,VANOS系统增加了对进排气凸轮轴的精确控制,可极大地减少未燃烧的残余气体,改善发动机的怠速性能。

VANOS系统根据发动机转速和加速踏板位置来操作调节进气凸轮轴与曲轴的相对位置,是具有可变进气门升程控制功能的气门驱动系统,发动机的进气完全由无级可变进气门升程控制,不再需要传统发动机所必需的节气门。在发动机低速运转时,进气门将延迟开启以改善怠速稳定性;中等转速时,提前开启进气门增大进气量,提高动力性,使废气在燃烧室中进行再循环,从而降低燃油消耗和尾气排放;高速运转时,推迟进气门开启,从而发出最大功率。

相比传统发动机以油门控制节气门的方式,该系统在踩下油门踏板时,可以快速响应,通过直接控制进气门开启升程,增加进入气缸的进气量,输出所需的动力。电子气门发动机进气阀门开启深度最浅0.25mm,最深可以到9.7mm,相差近40倍,整个调节过程所需要的反应时间大约只要0.3s。

在VANOS系统中,曲轴驱动排气凸轮上的链轮,链轮固定在排气凸轮轴上,第二套齿轮驱动穿过进气凸轮的第二根链条,进气凸轮上的链轮没有固定在凸轮上,因为其中间孔内有一套螺旋形的齿,在凸轮一端的外侧有螺旋形的齿轮,由于尺寸太小,无法与大链轮内侧的齿轮相连接。有一小块杯状带有螺旋形齿轮的金属,其内侧与凸轮相配合,外侧与链轮配合。该系统的可变性就是源于齿轮的螺旋形,杯状装置EMS控制系统调节液压机构内部的油压驱动。

使用双VANOS系统,气门升程增加了0.9毫米,使得进气门的开启时间因而延迟了12度。为迅速而精确的调整凸轮轴,双VANOS系统需要非常高的油压,以确保在发动机低转速下能提供更大的扭矩,在高转速时有更大的功率。随着不完全燃烧气体的减少,发动机怠速得到了改善。

双VANOS系统改善了低速扭矩,使扭矩曲线趋于平缓并能为该组凸轮轴扩展功率带。双VANOS系统发动机的扭矩峰值比单VANOS低450转,功率峰值高200转/分,1500-3800转/分下的扭矩曲线也得到了改善。同时,扭矩下降的速度不会超过功率峰值。

双VANOS系统的优点在于在各种工作状态下,使得废气中的可用成分再次进入气缸进行再循环,降低排放,提高燃油经济性。

在发动机加热过程中,VANOS系统改善了油/气混合气,并有助于快速将催化转化器加热至正常工作温度。当发动机怠速时,系统能够保持怠速转速的平稳和连贯,这归功于废气再循环被减少到了最低程度。在部分负载条件下,废气再循环提高到更高水平,允许发动机在更大的蝶形气门开启角度下工作以获得更佳的燃油经济性。全负荷件下,系统恢复较低的再循环容量以为各缸提供尽可能多的氧气。

从动力性方面来说,由于宝马的VANOS系统通过一些列电子装置的管理,基本实现了发动机无段的线形输出,因此它也是得到全球广泛性能迷们承认与喜爱的一项技术,在宝马的各系车中都能看到它的身影;但同时,相比于i-VTEC等比较偏重机械控制的技术,由于其采用了比较多的电控设备,因此成本上也要高出一块。

结束语

本文通过详细的阐述了Valeoe-Valve系统和BMW的Double-VANOS技术,让大家对电子气门技术有了更加深入的了解,后续短文会对可变气门正时技术进行更加详细的介绍。

宝马电子气门的结构与工作原理,学汽修的你一定要搞清楚!

宝马车电子气门(VALVETRONIC)是指由全可变气门行程控制装置和可变凸轮轴控制装置(双VANOS)构成的,可以任意选择进气门关闭时刻。电子气门在很大程度上承担了节气门的功能。为此需要使用一种全可变气门行程控制装置。

一、电子气门的结构

宝马车电子气门的构成如图1所示。在进气门打开情况下进气量是通过调节气门行程来完成的,这样就能确定最佳的气缸气量。

1、伺服电动机

伺服电动机又称执行电动机,布置在凸轮轴上方。伺服电动机的蜗杆嵌入安装在偏心轴上的蜗轮内。伺服电动机是一个典型闭环反馈系统,减速齿轮组由电动机驱动,其终端(输出端)带动一个线性的比例电位器作位置检测,该电位器把转角坐标转换为一比例电压反馈给控制线路板,控制线路板将其与输入的控制脉冲信号比较,产生纠正脉冲,并驱动电动机正向或反向地转动,使齿轮组的输出位置与期望值相符,从而达到使伺服电动机精确定位的目的。

2、滚子式气门压杆

滚子式气门压杆和中间推杆的接触面是斜台,在斜台处进行的是滚动摩擦可减小机械损失,并且压杆与推杆分为不同的等级,在同一个气缸上始终安装相同等级的部件。

3、偏心轴传感器

偏心轴传感器如图2所示,通过测量偏心轴转角,从而为调节功能提供实际参数。偏心轴传感器将偏心轴位置发送给气门行程控制单元或DME。其测量角度范围为180°。

偏心轴传感器按磁阻效应原理工作:当附近磁场更改位置时,铁磁导体就会改变自身的电阻。为此偏心轴上装有一个带有永久磁铁的磁轮。偏心轴旋转时,这些磁铁的磁力线就会穿过传感器内的导磁材料,由此产生的电阻变化通过发动机控制单元换算为气门行程。因此必须用一个非磁性固定螺栓将磁轮固定在偏心轴上,否则传感器无法正常工作。

二、电子气门的工作原理

1、电子气门的工作过程

发动机在不同转速下,对于气门行程的需求差别非常大。在低速下,由于进气量小,如果气门行程很大,将无法产生足够的进气负压,喷油器在喷油以后,无法与吸入的空气充分混合,造成燃烧效率低,低速转矩将大幅减小,而且排放也会增高。在这种情况下,应采用较小的气门行程。由于气门行程小,增加了进气负压,由此产生的大量涡流可以将混合气充分混合,满足低转速下发动机的正常运转。到了高转速状态下情况则恰好相反,此时的进气量非常大,如果气门行程过小,会导致进气气阻过大,无法吸入足够的空气,从而影响到动力的发挥。因此在高转速下,就需要气门行程较大,才能获得最佳的配气需求。

为减小耗油量,宝马车的可调式气门机构导入发动机的空气量不是通过节气门而是通过进气门的可调式升程调整的。通过电动可调偏心轴,由中间杠杆改变凸轮轴对滚子式气门压杆的作用,由此产生进气门的可调式升程。节气门只在起动时和应急运行时使用。在所有其他的运行状态下节气门均全开,几乎无节流作用。电子气门技术通过实现对气门行程的无级调节,达到对发动机不同转速状态下,功率转矩输出的最佳均衡。

发动机的进气量由电子节气门和电子气门行程控制机构共同进行控制。在起动过程中,进气量主要由电子节气门进行控制。在发动机运转之后,节气门就全开了,怠速至高速工况的进气量则主要由电子气门行程控制机构进行控制。由于进气道不再有节气门的节流作用,因此进气阻力大幅减小,从而有效地提高了发动机的输出转矩。

伺服电动机布置在凸轮轴上方。伺服电动机用于调节偏心轴,而伺服电动机的蜗杆嵌入安装在偏心轴上的蜗轮内。进行调节后无需特别锁止偏心轴,因为蜗杆传动机构具有足够的自锁能力。偏心轴扭转可使固定架上的中间推杆朝进气凸轮轴方向移动。但由于中间推杆也靠在进气凸轮轴上,因此滚子式气门压杆相对中间推杆的位置会发生变化。凸轮轴旋转和凸轮向中间推杆移动使中间推杆上的斜台发挥作用。斜台推动滚子式气门压杆,从而使进气门继续向下移动,进气门因此继续开启。

中间推杆可以改变凸轮轴与滚子式气门压杆之间的传动比。在满负荷位置时,气门行程和持续开启时间达到最大值。在怠速位置时,气门行程和持续开启时间达到最小值。由于怠速时的最小气门行程非常小,因此必须确保气缸充气均匀分布,所有气门的开启程度必须相同。因此滚子式气门压杆和相关中间推杆分为不同等级。通过标记出的参数可区分不同等级的部件。在同一个气缸上始终安装相同等级的部件。通过在出厂前分配滚子式气门压杆和中间推杆可确保,在最小气门行程时气门也能均匀进气。

2、电子气门和VANOS共同调节的原理

电子气门利用VANOS和全可变气门机构对进气门的行程和关闭时刻一起进行调节,从而使“进气门关闭”时燃烧室内到达理想的混合气质量。如图3所示,采用电子气门后,换气损失大大减小,进气门关闭始终是在进气行程中实现的,这一点与普通电喷发动机是不同的,普通电喷发动机的进气门都是压缩行程初期才关闭,也就是进气门迟闭,目的是为了充分利用进气流的惯性增加进气。而电子气门由于进气道无节流,与大气直接相通,因此无需迟闭,随着进气门升程的增大,其关闭的时刻也越靠近下止点,关闭时刻相对越来越晚,进气量也越来越多,正好与发动机负荷匹配。进气门关闭后在封闭气缸内的进一步膨胀和接下来的压缩过程几乎都不会产生能量损耗,因此进气损失减少,但是此换气优势随着负荷的增大而不断减弱。满负荷时换气优势为零,因为普通电喷发动机此时节气门也全开。

当负荷较小时进气门开启时间必须非常短,只有通过大幅度减小气门行程才能实现,这样会使气门开启横截面减小,出现明显的节流作用,但是气门间隙处的进气速度由50 m/s提高至300 m/s以上,而且气流围绕整个气门均匀流动,因此使得油滴尺寸减小,实现最佳的混合气形成过程,燃烧充分并减小功率输出波动以及HC和NOx的排放,据实验测得怠速时可减少燃油消耗达20%。负荷增大,节油潜力降低,但即便发动机以理想空燃比运行时,仍可节油10%。

综上所述,宝马的电子气门技术在发动机怠速和部分负荷时由于节气门全开,通过进气门调节进气量从而可以大大减小换气损失,正如有人形容的一样:普通电喷发动机在怠速或部分负荷时,由于节气门节流作用,就好像带着“口罩”在呼吸;而电子气门发动机则是在相同工况下摘掉了“口罩”呼吸,大大减小换气损失,提高了发动机效率。

相关问答

各位汽车专家们,什么是 电子气门 ,谢谢_汽配人问答

[最佳回答]提高发动机效率是各大汽车厂商不懈的追求。当可变气门正时已经从豪华高性能轿车逐步走向了家庭轿车时,下一步发动机进气系统的发展方向是什么当...

电子气门 工作原理相关知识汇总 - 汽车维修 技术

以下是汽车维修技术网分享的关于电子气门工作原理的知识,以及电子气门工作原理相关问题的介绍,希望这些电子气门工作原理内容能帮助到你。

宝马 电子气门 工作原理视频

[最佳回答]宝马电子阀的工作原理如下:1。驾驶员操纵油门踏板,油门踏板位置传感器产生相应的电压信号,并将其输入节气门控制单元(查成交价|参配|优惠政策)。控...

电子气门 摇臂原理?

电子气门摇臂是指汽车发动机上的一种气门控制部件,利用电子信号来控制气门的开关。其工作原理是通过电子控制单元(ECU)发送信号到摇臂上的电磁铁,激活电磁铁...

宝马 电子气门 工作原理_车坛

宝马电子气门工作原理如下:1、驾驶员操纵加速踏板,加速踏板位置传感器产生相应的电压信号输入节气门控制单元,控制单元首先对输入的信号进行滤波,以...

宝马 电子阀 工作原理

[最佳回答]相比目前涡轮增压的普及,各种可变气门和气门升程技术的技术含量更加丰富。其实其他品牌也有升程技术,只是宝马Valvetronic的电子气门控制有点与众不...

捷豹pt204发动机 电子气门 怎么泄压?

要泄压捷豹PT204发动机的电子气门,首先需要将发动机熄火,并确保车辆处于安全停放状态。然后,打开发动机盖,找到电子气门的位置。根据车辆的具体型号和配置,...

宝马x1 电子气门 的更换方法?

更换宝马X1电子气门的方法如下:首先,确保车辆处于安全停放状态,断开电池负极的接线,以防止电流引发意外。然后,打开引擎盖并找到所需更换的电子气门的位置...

宝马 电子气门 调整范围标准?

是指在宝马汽车中,电子气门的调整范围所遵循的标准。电子气门是控制发动机进气和排气的重要部件,它通过电子控制单元(ECU)来实现精确的气门开启和关闭时间控...

宝马x6 电子气门 控制系统坏了有什么反应?

1、车辆的电子节气门故障,车辆会出现怠速不稳,或者启动车辆后,车辆没有怠速。2、车辆启动困难,启动车辆后还会伴有排气管冒黑烟的状况,车辆的油耗有明显增...