电力电子应用发展综述 综述︱电磁发射系统中电力电子技术的应用与发展

小编 2024-12-19 电子应用 23 0

综述︱电磁发射系统中电力电子技术的应用与发展

中国电工技术学会将于2016年12月23日(周五)在北京铁道大厦举办“2016第三届轨道交通供电系统技术大会”。

请感兴趣的读者扫描下方的二维码,或关注微信公众号“电气技术”,浏览会议详情和进行快速注册报名。注册时请准确填写相关信息,会议服务人员将及时与您确认参会事宜。

海军工程大学舰船综合电力技术国防科技重点实验室的研究人员马伟明、肖飞、聂世雄,在 2016 年第 19 期《电工技术学报》上撰文指出,近年来随着电力电子技术的飞速发展,推动了电磁发射技术稳步走向工程应用。

本文列举了电力电子技术在电磁发射储能系统、脉冲功率变换系统、闭环运动控制系统中的典型应用,并对后续加快电力电子技术的发展提出了几点建议。

电磁发射装置是一类利用脉冲功率发生装置产生的电磁力推动负载达到最大速度的装置,它的实质是将电磁能变换为发射载荷动能的能量变换装置[1-4]。电磁发射系统主要由储能系统、脉冲功率变换系统、脉冲发射装置和闭环运动控制系统四部分组成,如图1所示。

图1 电磁发射系统组成

电磁发射系统的工作原理是:储能系统以较小的功率长时间地从电网吸收和存储能量;当储存的能量满足发射所需后,一旦接收到发射命令,立即向脉冲功率变换系统释放能量;脉冲功率变换系统将储能系统释放的电能变换为脉冲发射装置工作所需的脉冲电能,产生电磁力推动发射体运动;闭环运动控制系统实时地控制发射体的运行轨迹,确保在预定的位置将其加速至设定的末速度,完成发射任务。

图2展示了电磁发射技术在军事领域及民用领域的广泛应用需求和前景。以航母舰载机发射系统为例,相对于传统的蒸汽发射,电磁发射具有过程可控性好、发射机种类多、应急响应快、出动率高、可维护性和适装性良好等显著优势。

图2 电磁发射技术应用

电磁发射本质上是能量的变换,为实现这一能量变换过程,需要应用大量的电力电子装置及相适应的控制技术,对电力电子装置在总体设计、拓扑结构选择、控制系统设计以及辅助系统的设计等方面提出了很高的要求,具体体现在:

1发射过程具有超大功率、脉冲式、间歇循环式的工作特点,要求电力电子装置具备大幅调节电流和电压的能力;2可靠性要求极高,系统设计时在硬件和软件上需采用冗余设计;3在主电路拓扑结构的选择和设计方面,受到单个开关器件功率等级的限制,通常需要进行器件级、单元级以及装置级的串并联集成;4发射过程中,控制对象呈现显著的非线性特征,对参数辨识和控制器的设计提出极高的要求;5装置之间的信息流错综复杂,对于控制系统的时序配合和同步提出了很高的要求;6在特定的应用场合下(如水上、水下、陆上移动平台上),对装置的体积、重量、噪声、散热等方面提出了严苛要求,要充分考虑到电磁发射系统脉冲间歇式的工作特点,进行装置设计和系统集成,以满足系统的功能及性能指标。

综上,正是由于电磁发射系统对电力电子装置强烈的应用需求以及对性能、可靠性、适装性等方面的极高要求,促进了电力电子技术在电磁发射系统中的应用和升级,推动了电力电子学科的发展。下文着重介绍电力电子技术在电磁发射储能系统、脉冲功率变换系统以及闭环运动控制系统中的典型应用。

2 能量存储与释放技术

2.1 储能方案设计与对比

电磁发射装置瞬时功率极大(100MW级至GW级),按能量的存储形式,现有的储能方案主要有三种:1化学储能,如蓄电池、超级电容器和脉冲电容器等;2机械能储能,如飞轮储能;3超导储能。

表1列举了以上三种储能方式的优缺点。超导储能虽然具有能量密度大、效率高、响应速度快的优点,但由于运行环境要求苛刻、影响超导带材失超的因素较多、体积重量较大等原因,暂时还处于机理研究及实验样机研制阶段。结合电磁发射系统工程化和可靠性等方面的要求,下文主要介绍惯性储能系统的逆变装置和励磁装置、超级电容器充电装置的设计和控制。

表1 三种储能方式的对比分析

2.2 功率柔性输出逆变装置的设计及控制

储能系统逆变装置的本质是一台具备变频变压调速功能的变频装置,能够以较小的功率拖动或制动储能电机[5-7],采用大容量多电平电力电子变流器的模块化设计方案[8,9],其电路拓扑如图3所示。

图3 储能逆变装置主电路拓扑

储能电机作为电磁发射系统的脉冲电源,其转速在发射期间将发生大幅跌落。高转速大突变系统的控制稳定性问题是储能逆变装置的关键问题,难点在于:

1转速测量的时延,在高速系统中会造成更大的角度偏差,极大的降低了控制器的稳定裕度;2储能电机始终工作在加速或减速过程,发射期间,储能拖动电机转速的急剧变化使得转速的精确测量变得更加困难,严重时甚至会导致磁链和转矩解耦失败;3储能拖动电机的转速突然剧烈变化,会导致电机的输出转矩突然变化,从而使得电机输出电流剧烈变化,从而增加了储能逆变装置对输出电流的控制难度。

为解决高转速大突变系统的控制稳定性问题,主要从以下几方面进行改进:

1改进转速测量算法,采用带有转速预估的隆伯格转速观测器进行转速预估,从而尽量降低转速测量的时延和误差,保证在高速段转速测量及角度测量的正确性;

2通过对高压大功率IGBT三电平电路特点的分析,实现了储能逆变装置损耗的准确计算,优化逆变装置的散热设计,最大程度地提高逆变装置的开关频率;

3在控制算法中,基于输出功率变化率限值,实时调整输出功率的最大值,确保储能装置的输出功率和功率变化率不超出限制,大大降低了储能电机转速大范围快速变化时对电网的冲击,实现逆变装置对储能拖动电机的柔性控制。

采用上述改进后,电机在高转速和大突变条件下仍然可以实现转矩电流的精确跟踪,并保证控制的稳定性。电机转速、d轴和q轴电流波形如图4所示。

图4 实验验证波形

2.3 储能电机能量脉冲释放控制技术

与普通发电机励磁系统的要求不同,电磁发射储能电机的励磁装置需要在很短时间内大幅度提高输出功率,即快速强励过程。励磁装置通过急剧增大励磁机的励磁电流来快速提高主发电机的励磁电流,满足电磁发射期间励磁调节快速性的要求[10-12]。

图5为储能电机励磁装置及其控制系统原理框图,励磁装置包括励磁控制器、励磁电流功率放大器、转枢式励磁机及旋转整流器。励磁系统的工作原理为:励磁电流功率放大器在励磁控制器控制下,向转枢式励磁机的励磁绕组提供励磁电流,实现第一级励磁功率放大;励磁机转子电枢输出交流电压,经同轴的旋转整流器向主发电机转子上的励磁绕组提供励磁电流,实现第二级励磁功率放大。

图5 储能电机励磁控制系统原理框图

为了满足电磁发射所需的短时强励功能,储能电机励磁装置采用了以下措施:

1采用电压双象限H桥电路拓扑,克服了励磁绕组平均电压低与较高的励磁电压(励磁电压高响应速度快)导致的PWM控制信号占空比过低的矛盾,大大提高了励磁电流输出调节的响应速度;

2针对储能发电机转速快速下降、输出功率短时大幅线性增加的工况,采用前馈加双闭环反馈的励磁控制策略,提高了励磁电流指令的变化速度,大大加快了控制系统电流环的响应速度和电压环的调节精度;

3在前馈控制中分别引入电压分量和电流分量的超前校正网络,克服了系统大惯性时间常数造成的影响,进一步提高了系统响应速度[13-16]。

图6为励磁装置在发射过程中的励磁电源电压、输出电流和励磁电源电流波形。可以看出励磁电源电压基本稳定,输出电流和励磁电源的电流呈线性增加。

图6 励磁装置输出线性增加的电流

2.4 脉冲电容器储能装置的充电控制技术

电容型脉冲功率电源是导轨式电磁发射装置的供电能源,其中脉冲电容器是其核心储能元件。与传统的电容器不同,因电磁发射作用时间短且储能规模大,从而兼具超大能量和超高功率输出的特点。以32MJ动能导轨式电磁发射为例,其单次输出能量达百兆焦、瞬时输出功率达数十吉瓦。在需要连续快速发射的场合,单一储能难以满足该要求。

海军工程大学提出了导轨式电磁发射装置应采用混合储能方式供电,其原理如图7所示,电路简图如图8所示。混合储能的核心思想是将电网能量在较长时间内以较小功率存储在电池中,在需要发射时,在短时间内将能量传递至电容器中,最终在毫秒级瞬时以超大功率由电容器提供给负载。混合储能利用化学储能的高能量密度和物理储能的高功率密度,实现了能量的压缩和功率的放大。

图7 电池+电容型混合储能装置原理图

图8 利用蓄电池对脉冲电容器充电电路简图

在直流斩波、恒压充电和台阶式充电等充电方式中,海军工程大学提出了图8所示的台阶升压式充电方式,用于实现电池对脉冲电容器的快速充电。台阶升压式充电结构简单,具有近似恒流的输出特性,且开关频率低、损耗小。

为了实现能量转移过程的精确控制,电池对脉冲电容器的充电采用双环控制策略,外环采用均衡控制方法,降低蓄电池大倍率放电时的发热量,保证放电一致性,延长使用寿命;外环采用时序串联控制方法,并引入时序重构算法,满足对脉冲电容器的精准快速充电。

3 脉冲功率变换技术

储能电机输出的电能不能直接供给脉冲发射装置,必须通过脉冲功率变换系统将电能经过交-直-交环节,变换成幅度、频率、相位及相关动、静态指标符合要求的电能。发射装置如果采用分段供电的形式,还需要通过分段切换开关输送给脉冲发射装置。

3.1 脉冲式整流装置的设计

电磁发射脉冲整流装置的输出功率需从0到几十MW迅速变化,且以脉冲间歇的特殊模式运行,装置要承受剧烈的脉冲冲击,这对其晶闸管触发控制的精度和响应速度都提出了很高的要求。

脉冲功率变换整流装置选择可控硅作为开关器件,正常工作时,可控整流桥处于不控整流工作模式,此时最简单、可靠的触发方式为持续施加触发脉冲。但在脉冲超大功率应用场合,持续触发方式会带来极大的暂态损耗;而如果采取实时相控来准确控制晶闸管触发脉冲投切的话,由于整流桥输入频率、输入电压快速变化,并且输入电压波形畸变严重,给相控策略的实现带来了很大难度,也将大大增加控制的复杂性,随之带来装置可靠性的下降。

针对电磁发射整流装置特殊的工作特性,在综合考虑触发板损耗与系统可靠性的基础上,脉冲功率变换整流装置的触发脉冲采取脉冲列的形式,脉冲列的高、低电平占空比均为50%,既能保证晶闸管对触发脉冲持续时间的要求,又能在较大程度上减小触发板损耗,触发脉冲列如图9所示。

同时针对晶闸管功率脉冲进行优化,触发控制逻辑会主动撤除不必要的触发脉冲来降低门极功耗,因而门极功耗安全裕量增大,可以使用更强的触发脉冲来增强晶闸管的动态性能。大部分情况下依靠预触发脉冲即实现了晶闸管的可靠导通,实际工作中触发电路需要发送的触发脉冲的数量很少,触发控制策略能有效控制门极功耗。

图10为晶闸管的端电压、阳极电流和触发脉冲波形,可见依靠预触发脉冲即实现了晶闸管的可靠导通。

图9 触发脉冲电压电流波形

图10 晶闸管端电压、阳极电流、触发脉冲波形

3.2 脉冲式逆变装置的设计

脉冲式逆变装置的单台容量达几十MV·A,输出电压达几千伏、输出电流高达上万安培,如何在现有开关器件功率等级、拓扑及控制方法的条件下,突破高压多电平逆变器的关键技术具有极高的挑战性[17,18]。

为了满足电磁发射系统性能指标的要求,逆变装置可采用如图11所示的二极管钳位H桥级联混合九电平拓扑结构[19-22],以二极管钳位三电平半桥单元为基本单元的模块化结构。

图11 脉冲功率逆变装置主电路拓扑

为了提高脉冲功率逆变装置的电流输出能力,结合大功率电力电子器件的发展现状,脉冲功率逆变装置采用了器件和装置两级并联的思路:

1二极管钳位式三电平半桥单元采用IGBT并联技术,增加了开关器件的功率冗余性,降低了工作损耗;

2主从两台脉冲功率逆变装置并联工作,共同为脉冲发射装置的一相定子绕组供电。受装置的体积、重量以及线路压降的限制,逆变器的输出不宜配置均衡电抗器进行并联,这对输出电缆的布置以及主从逆变器控制脉冲的精确同步提出了严格要求。

IGBT并联工作时,由于器件本身参数的分散性、驱动电路的不一致性以及外围电路分布参数的差别,将导致并联IGBT的静态和动态电流不均衡。通过实验发现,外围电路对并联均流的影响是主要因素。

通过对二极管钳位三电平拓扑结构的各种开关逻辑切换的换流过程进行分析,对主回路复合母线结构的分层和进出线进行了初步设计,通过对复合母线开不同类型的电气孔进行并联器件外围电路对称性的匹配,确定了最佳的母线方案,母线模型如图12所示。

图12 复合母线Q3D模型

通过采取以上措施,并联运行的逆变装置均流效果良好,输出电流波形如图13所示,电流不均衡度控制在5%以内。

图13 并联逆变器输出电流波形

3.3 分段供电技术

在发射行程较长的应用场合,为了提高电磁发射系统的效率和功率因数,降低系统对电源容量需求,需要采用分段供电技术,利用位置传感器实时检测动子的运动位置,实时切换通电定子区间,实现与动子耦合的紧邻数段定子模块通电,而其他定子模块不通电[23]。分段供电技术主要包括分段供电切换策略和切换开关设计技术。图14为脉冲发射装置分段供电的示意图。

图14 脉冲发射装置分段供电示意图

在段与段切换供电的过程中,电机不可避免地会出现错位、并联等特殊模态,切换不当甚至会出现缺相模态。不同的切换策略将会导致直线电机出现不同的特殊模态,或者是特殊模态持续的时间有所不同。这些特殊模态会对发射推力造成不同程度的影响,必须对分段供电策略进行深入研究。

通过建立考虑分段切换供电暂态过程的脉冲发射装置数学模型,对错位、并联、缺相等特殊模态进行定量研究,结果表明分段切换策略应遵循的基本设计原则是:绝对地避免缺相模式,尽可能减小并联模态运行的时间。

采用三相电流过零时依次切换的方法,错位模态不可避免,但错位模态仅在切换的短暂过程中导致电流尖峰,对发射推力的影响较小。

图15 脉冲发射装置分段供电拓扑结构

图15为脉冲发射装置分段供电的典型拓扑结构。电磁发射过程中,切换开关处于高电压、大电流、温度等应力叠加的暂态过程,对切换开关本体的可靠性提出了极高的要求。

理论和实践证明,半导体器件失效、损坏以及性能劣化的绝大多数原因归结为温度超标。当工作电流大于500A时,采用双面压接是最可靠的散热方式。大功率切换开关采用双面压接安装方式,实现主电路的两极同时散热,热阻最小,散热效果最好。

在结构设计方面,两只晶闸管采用背靠背压接的方式充当交流阀,并在它们的阳极与阴极之间并联接入阻容吸收保护模块,基于晶闸管反向恢复电荷动态特性,优化计算阻容吸收参数[24],解决高压大电流分段切换开关切换过程中易过电压击穿的技术难题,以保证分段切换开关的运行安全。

4 电磁发射的闭环控制技术

闭环控制系统是电磁发射系统的大脑,负责调节储能系统的能量释放,控制脉冲功率变换系统的能量输出,对脉冲发射装置输出电磁力的精确控制,满足不同发射载荷对速度和加速度的要求[25-27]。

图16为闭环控制系统框图。轨迹生成算法生成理想的发射轨迹曲线;位置观测算法根据从位置传感器获得的位置编码信息,观测出直线电机动子的瞬时位置和速度;位置控制算法实时计算出动子实际轨迹精确跟踪预设发射轨迹曲线所需的给定电磁力的大小;矢量控制算法计算直线电机定子所需的励磁电流和转矩电流;最后通过电流闭环控制算法获得直线电机定子的电压指令,下达给脉冲功率变换系统,实现了“信息流”对“能量流”的控制,保证发射目标的实现。

图16 电磁发射闭环控制系统原理框图

电磁发射系统由多个能量链组成,利用冗余提高了可靠性,同时对多个能量链的同步控制和故障条件下的系统重构提出了极高的要求。

闭环控制系统采用:1计算同步、PWM脉冲同步等多种同步技术,既实现了多个储能装置功率和能量释放的均衡控制,又实现了多台直线电机之间出力的均衡控制;2当一个能量链故障时,电机的磁路和电路均会发生改变,相应电机参数也会发生改变。电机闭环控制器能较好地适应控制对象的变化,在发射的恒加速阶段维持了直线电机输出电磁力的稳定。

针对电磁发射的直线电机存在多定子耦合、边端效应、气隙变化等非理想因素的问题,电机闭环控制器采取考虑耦合、不对称性的控制方法,取得了很好的控制效果[28-30];直线电机控制器具有较宽的调速范围,实现了零转速工况下的矢量控制;电机闭环控制器采用轨迹观测与矢量控制结合的控制方法,通过优化设计给定轨迹,结合精确的轨迹控制算法,使得发射过程具备较好的位置跟随性能,很好地满足了发射任务的要求,典型发射过程中的轨迹误差如图17所示。

图17 闭环控制轨迹误差

5 总结和展望

电磁发射由技术设想转变成工程应用,标志着发射技术发生了历史性的变革。随着电力电子装置集成化、模块化和能量密度的不断提高,电磁发射技术将快速的升级换代,电磁发射系统的发射能力将快速增长,体积、重量、成本、系统复杂程度会降低,这将使得电磁发射的应用领域将迅速拓展。

除了在军用武器发射形态领域的转化应用外,电磁发射系统中的电力电子技术也可广泛用于民用相关领域。例如将电机惯性储能的关键技术应用于风电场,可以起到削峰填谷的作用,大大改善风力发电系统功率波动对电网的影响,对我国推广大功率风力发电具有重要意义;将闭环控制技术应用于轨道交通系统,可以大大提升地铁、高铁的控制可靠性和自动化水平;将电磁发射技术应用到航天发射,具有发射成本低、环境污染小、可重复快速发射等优点。

同时,立足我国电力电子技术的发展,可在以下几方面继续深入开展应用及基础研究,持续牵引和提升电力电子理论与技术发展:

1)深入器件内部,研究其工作机理,建立电力电子器件及其组合混杂系统多时间尺度的动力学表征,在此基础上查明器件极端工况下的可靠性量化评估方法,进而建立电力电子器件尽限应用理论,实现电力电子混杂系统的精确设计,为电磁发射系统的高功率密度和高可靠性提供有力的支撑,特别是应用于舰船中压大电流、短时脉冲间歇式工作等场合。

2)加强开展研究新结构、新材料的电力电子功率器件制备与应用研究,避免走跟踪研仿的老路子,实现我国电力电子器件的跨越式发展。

3)研究电力电子电能变换数字控制中时延特性、量化误差对装置性能影响机理等基础问题,并通过电力电子装置控制网络信息流的优化设计,实现能量流的精确控制。

4)开展基于多学科交叉的大容量电路级和系统级电力电子系统集成优化设计方法,充分发挥现有器件的性能,实现电力电子系统的集成化、模块化、标准化和智能化,使电能变换和控制技术得以更新换代,弥补和减小由器件本身性能与国外的差距而造成的电力电子设备或系统性能的巨大差别。

“2016第五届新能源发电系统技术创新大会”演讲报告精要版已在“分布式发电与微电网”微信(微信号:dggrid)上陆续发布,请感兴趣的读者关注阅读。

西安交大科研团队发表5G技术在电力物联网的应用展望综述

本文约1万字,建议收藏后阅读

当前,电力物联网作为电力行业向能源互联网发展革新的过渡形态,在监控、管理等方向面临着新时代数字化变革。现有数据传输方案应对变革乏力,急需引入先进的数据传输方案作为数字化先导,引领并完善电力物联网的建设。第五代移动通信技术(5G)因具有带宽、时延、传输速率等性能指标上的优势,受到了各行各业青睐,在未来也被期望能够与电力物联网深度融合,应对发展挑战。

为此,西安交通大学电力设备电气绝缘国家重点实验室的研究人员黄彦钦、余浩、尹钧毅、孟国栋、成永红,在2021年第17期《电工技术学报》上撰文,以电力物联网数据传输方案为研究对象,首先阐述了电力物联网建设完善过程中数据传输的重要性,通过梳理电力物联网构架,分析了其中的数据传输网络,将数据传输方案应用场景划分为采集、控制和电力业务信息传递三大类;然后,以此为据,梳理、讨论了现有数据传输方案在电网中的应用现状,并结合当下数字化变革分析了电力物联网对数据传输方案的新需求;随后,从5G技术特征出发,分析了5G技术在电力物联网中的适用性,并对其在电力物联网中的研究现状进行了概述;最后,指出5G技术在电力物联网中应用将会面临的挑战,并展望了电力物联网数据传输方案将承载多元化的海量信息和以一体化通信架构发展的趋势,以期为电力物联网的深入研究和实践提供参考。

随着工业4.0时代的到来,以“信息物理系统(Cyber Physical System, CPS)”,“物联网(Internet of Things, IoT)”等为基础技术架构的战略部署再度引发了人们对于建设能源互联网的深入思考。自能源互联网这一概念提出以来,其在我国的发展便紧密围绕电力系统,通过融入以大数据、云计算、物联网、移动互联网等为代表的互联网技术,以期跨领域实现与可再生能源系统以及其他能源系统深度的数据融合和高度的系统协调运行,从而最终形成一个高效智能且双向互动的能源服务网络,推动社会与经济的可持续发展。

当前,电力物联网作为物联网架构在电力行业的具体表现形式和应用落地,是电力行业向能源互联网发展革新的过渡形态。在能源互联网的建设愿景中,电力物联网将发展成为一个数据流与能量流紧密结合的系统。

其中,数据流的形成依托先进的数据感知、数据传输、数据分析及数据共享技术,数据流是实现合理调配和管理能量流的关键前提和必要保障,它对系统的运行性能起着决定性作用:一方面,在电网的各环节上尽可能全面地部署了感知终端,获取类型丰富且多样化的数据信息,依托实时响应且高度可靠的数据传输技术将信息传输至数据平台,进行数据挖掘、融合分析,并将分析结果进行反馈,从而满足随着电网建设规模扩大和智能化进程中对规划建设、生产决策、运营维护、监测调控、资产管理等内在业务的需求;另一方面,在能源互联网中,通过对接入的电力网、热能能源网、太阳能能源网等其他能源系统分享的数据进行交互分析,从而由数据传输网络向可再生能源及其他能源系统反馈协调运行的对应信息,以形成一种多能源协调互补的能源网络。

由此可见,数据传输技术是实现监测、控制和管理的基本手段,是应对电力物联网发展中数字化变革与大数据挑战的核心要素,也是建设能源互联网的重要支撑,对其展开研究具有极其重要的意义。现阶段,电力物联网中数据传输技术的选择方案包括了各种有线和无线技术,它们在诸如传输速率、功耗、覆盖范围等方面都有自己独特的优势。

但由于缺乏统一的标准化平台,数据之间的共享交互能力差,一些技术在网络访问和传输能力上不足,且存在时延无法满足特定业务需求等问题,这些都使得电力物联网应对数字化变革乏力,严重阻碍了电力物联网的进一步发展。故引入能够应对数字化变革与能源革命,促进电力物联网建设完善,且支持能源互联网相关业务发展的数据传输方案显得至关重要。

伴随着5G技术的成熟,其凭借高速率、低延迟、高带宽和支持大规模接入等特性将适应绝大部分电网业务的数据传输需求,有望应对目前电力物联网面临的数字化挑战。且通过该项先进通信技术能够映射出更多的电网业务,助力新兴产业的发展,这将为电力物联网带来颠覆性的变革,为电力物联网的建设提供强有力的支持。

因此,本文梳理了电力物联网中的数据传输网络,分析了现有数据传输方案应用现状,认为5G作为无线传输奇点技术,将能够成为数字化战略先导,引领电力物联网应对数字化发展。最后,展望了5G应用于电力物联网中将会面临的挑战,分析了未来电力物联网数据传输方案的发展趋势。

1 电力物联网中的数据传输方案

近些年,随着大数据、人工智能、智能感知、物联网及无线通信等技术的大力发展和推行,使得在电网内进行更加全面的数据获取、数据分析、以及价值信息分享和利用等逐渐成为可能。面对这样的数字化变革挑战,先进的数据传输技术作为建设电力物联网的核心要素之一,是电网系统运行的重要支撑。

它不仅为采集的各类电力相关数据提供了安全、高效的传输通道以助力计算分析,还为发布控制、检修类信息提供了实时、可靠的承载,也为对内对外分享整合的各类电力数据信息提供了桥梁。在美国国会的一项研究报告中也同样指出:电网四大建设目标将紧密围绕高效、安全且可靠的数据传输方案来最终实现,如图1所示。

图1 电网建设的四大目标

1.1 电力物联网构架

电力物联网包括感知层、网络层、平台层和应用层四层结构,如图2所示。其中感知层是电力物联网的底层基础,需要由该层完成各类数据的采集以及就地处理等工作。在这个环节中,由微型化、智能化的传感器对电力设备运行状态、气象环境、用户信息等数据进行全面获取,通过传输路径输送至本地数据中心,过程中由边缘计算模块等配合进行数据的本地化处理;本地数据中心(如变电站数据中心、光伏发电站数据中心等)作为感知层内的基本单元,它们之间、以及感知层与平台层间广域范围内的业务信息传输则依靠网络层来实现;平台层作为管理环节,负责电力物联网业务数据流的统一接入管理,并对业务信息进行高效处理;应用层则向下反馈调节信息并对外输出价值信息,实现规划建设、生产运行、经营管理、客户服务等对内、对外业务的支撑。

图2 电力物联网构架

1.2 电力物联网中的数据传输网络

电力物联网中的数据传输网络一方面承载由海量传感器、智能电器设备等采集的信息流接入上位机、云平台、智能电表等本地数据中心;另一方面,支撑了本地数据中心之间,或本地数据中心与电网数据中台间的信息互联;同时,对于由综合分析、评价产生的信息,电网系统仍需借助数据传输网络反馈这些调控信息并对其中的价值信息进行外部分享,以此完成电力信息的双向流动和对外价值创造,电力物联网中的数据传输网络如图3所示。由此可见,数据的传输需求贯通整个电力物联网的构架,协调电力系统整体的高效运行。

1.3 数据传输方案在电网中的应用现状

经过多年经营建设,电力行业中数据传输方案应用场景总体上可以划分为:采集、控制和电力业务信息传递三大类。现阶段,不同数据传输方案的使用满足眼下的暂时性需求,基本能保障各类电力业务安全、可靠的运行。数据传输方案可划分为有线和无线的形式,用以实现远程数据传输或者本地数据传输。

有线传输方案主要包括光纤、电力线载波、以太网及总线等技术。早期主要依靠总线或以太网技术满足来自采集或控制的数据传输需求。而对于业务信息的传输,则主要采用电力线载波技术和工业以太网技术。

例如,在采集场景中,西安交通大学成永红教授团队基于现场总线技术开发了国内第一套电力设备综合在线监测系统,该系统通过PXI总线集成技术实现了单台变压器的多参量在线监测,起到了良好的示范性作用;湖南大学汪沨等通过以太网技术设计了GIS设备的局部放电监测系统。在控制信息传输场景中,山东大学赵建国等研究了基于总线技术的继电保护系统;杨奇逊等基于总线通信构建了应用于变压器差动保护的过程总线通信实验平台。

随着光纤技术开始在电力行业中应用,其凭借传输速率、带宽、可靠性和实时性等方面的优势,逐渐替代了以太网和总线技术中以同轴线缆以及双绞线等为主的传输介质,并衍生出了xPON光纤技术,用以满足电网中采集、控制、业务信息流动等诸多业务场合对数据传输可靠性、实时性等的苛刻需求。据统计,截至2019年,35kV及以上厂站、自有物业办公场所/营业所已经实现了光纤全覆盖。

图3 电力物联网中的数据传输网络

各类有线传输的方式应用至今,虽然能够基本满足电网中的数据传输需求,但却存在布线、改线繁琐及通信网络扩展升级受限等问题。除此之外,在传输过程中,线路噪声、线路易老化受损等问题都会大大提高工业成本并降低工作效率。所以,有线方式在一定程度上制约了电网发展的灵活性。

另一方面,在我国电力部门发布的文件中指出:做好安全隔离措施的前提下,无线传输可以应用于电力行业。无线传输技术凭借灵活强大的扩展性、可嵌入性和较低的成本等优势协同物联网技术逐渐在电力行业中获得了良好的应用,并在采集、控制和业务信息传递三大类场景中取代了部分有线传输的方案。

当前应用在电力行业的无线传输方案主要有230MHz无线电力专网、3/4G蜂窝技术、卫星通信技术、WiFi、ZigBee、Bluetooth、低功耗广域网(Low-Power Wide-Area Network, LPWAN)技术等多种方案。无线传输技术投入初期,主要替代本地通信网络中使用有线方式的采集类业务,选择如WiFi、ZigBee、Bluetooth等技术作为无线方案。这些无线传输方案传输距离较短,传输速率有限,仅适合传输部分基础类型的数据,无法满足图像、视频等需要高带宽数据传输的需求,它们的主要性能参数见表1。

表1 短程无线传输技术性能对比

表1中,ZigBee技术的时延可以达到ms级,这使其能够满足一些对时延要求不高的短程控制类型业务对响应速度的要求,所以ZigBee技术也常常用于部分自动控制类业务。

随着蜂窝技术、卫星技术、低功耗广域网(Low-Power Wide-Area Network, LPWAN)技术的迅速发展,以及电力行业对于电力无线专网的大力建设,无线传输方案在覆盖面积、设备功耗、可靠性等方面得到了大力提升。

其中,随着物联网技术发展而来的LPWAN技术更是凭借其低功耗、覆盖面广的突出优势成为了关注热点。LPWAN技术根据使用频谱是否被授权,可以分为基于蜂窝技术、工作在运营商授权频谱下的窄带物联网(Narrow Band IoT, NB-IoT)技术和增强型机器类通信(eMTC),以及工作在非授权频谱的远距离无线电(Long Range, LoRa)技术和Sigfox技术,这些技术的主要性能指标对比见表2。

表2 LPWAN技术特点对比

NB-IoT技术与eMTC技术凭借其与运营商的绑定关系以及传输距离长、容量大、抗干扰能量强的性能特点,常常与3/4G蜂窝技术、230MHz/4G电力无线专网组合完成数据采集工作,以及密级较低的控制类或电力业务信息传递类业务。对于偏远地区及长距离输电线路等存在信号盲区的场合,常常通过卫星通信与LoRa或Sigfox技术相互配合来完成采集类业务的数据回传。

综上所述,无线传输方案能够在采集类业务中基本取代有线方案进行更加便捷的分布式采集,有助于推动新时代数字化进程。然而,相比于有线方式,由于无线方式在传输途中将无法避免干扰和恶意攻击等物理隔离和安全性问题,所以对于电力行业中密级度高的控制信息和电力业务信息的传输仍需依赖光纤专网等技术来实现。

电力物联网的进一步建设和发展在继续推进,随着对于源、网、荷、储中的各环节部署更多的智能感知设备,以及精准控制和双向互动需求的加深,数据传输方案服务的采集、控制和业务信息传递类业务将会发生革命性的改变。

1)在采集类应用场景中,将会迎来三个方面的深化。

①采集范围拓宽:由电力一次设备信息采集扩展到电力二次设备及各类环境控制、多媒体场景、用户侧等的信息数据采集,以期获取更加全面的数字化感知,加强对于电力资产的管理,加深对电力物联网和能源互联网能量流动的了解。②采集内容多元化:在基础数据、图像、语音的采集基础上,增加高清视频的回传,用以应对巡检、监控、应急现场自组网综合应用等电网大视频应用的需求。③采集频次实时化:对于满足未来用电负荷需求侧管理,用户实时定价等应用的发展,采集频次由当前的天、小时为单位的采集被期望提升到min级的准实时水平。

2)在控制类应用场景中,随着分布式能源调控、负荷精确控制等应用的发展,时延的需求将达到ms级。

3)业务信息传递场景中,在保障精确实时、安全保密的信息传递前提下加强双向互动,以达到加强管理协调各类电力业务的目的。

综上所述,在电力物联网的进一步建设中,数据传输需求将呈现爆发式增长,且对于无线传输方案的速率、连接密度、带宽和时延等有着更高的要求。虽然,无线传输技术为了满足不断提升的业务需求,发展了v5.2低功耗蓝牙、北斗四代等新技术,但应对电力物联网数字化变革还是显得乏力,难以支撑数字时代下电力物联网的发展。

作为电力物联网建设中的核心技术,数据传输面临着巨大的挑战,急需引入能够实现安全可靠、灵活接入、双向实时互动的“泛在化、全覆盖、高效率”无线传输方案予以支撑。值得庆幸的是,随着5G技术在其他行业领域应用的逐渐成熟,国内外许多专家学者一致认为电力物联网将会是5G应用的最大场景之一。

在2016年的一份欧盟报告中提到,5G技术将是未来电网的核心,将有助于解决并应对一些挑战,例如对连接大量传感器场景,5G技术能以高度的安全性和可靠性应对无处不在的通信覆盖范围。此外,欧盟资助的几个5G试点项目也分别对基于5G技术的电网使用案例进行实验。5G作为无线通信技术奇点,将会是替代电力物联网中绝大部分无线和有线传输方案的新选择,成为推动电网迈向数字化监控和管理的核心。

2 5G引领电力物联网的新时代变革

5G是指蜂窝网络的第五代技术标准。5G发展迅速,已经于2020年底在全球多个国家实现商用化,其在带宽、时延、传输速率等性能指标上都拥有远超于现有4G对应指标的优势。

2.1 5G在电力物联网中的适用性分析

国际电信联盟(ITU)对5G基本特征概况为:高速率、高容量、高可靠性、低时延与低功耗。这样的特性被称为“三高两低”。

1)5G数据传输峰值速度(理论最高速度)上行可达10Gbit/s,下行20Gbit/s,约为4G技术的20倍。对于电力系统中的海量、多元化数据采集业务,高速率可以为其提供有力支撑。

2)5G具有百兆甚至千兆赫兹的频谱宽度,能够在每平方公里支持100万个设备的高密度连接,且每平方米支持10Mbit/s的大容量数据传输,该性能指标是4G技术的上百倍。这将能够为电力物联网各领域(特别在配电通信网“最后一英里”无线接入挑战)中需要接入海量终端设备的高级计量业务、电网大视频应用等业务提供更优的解决方案。

3)5G通过多连接技术支撑其高可靠性。其理论指标为0.001%丢包率,可与光纤通信相媲美,有望为电力系统提供高可靠性的无线数据连接。

4)在低时延方面,根据欧洲电信标准协会、华为公司和IEEE的标准,表3列举了当前电网中几个典型业务对于传输延迟的要求。

表3 电网中不同典型业务的的延迟要求

4G时延往往超过50ms,这样的性能对于上述场景并不适用。但5G端到端延迟的预期性能指标为1ms,能针对许多协同控制场景提供灵活和及时的响应。

5)5G具有低功耗特征。通过优化休眠/活动比、设置无数据传输时的休眠以及网络切片技术,可让设备以低功耗方式运行,保持电力物联网中智能终端设备的较低能耗,从而保持较低的维护成本和设备成本,确保了设备寿命(对于工业应用,通常至少10年)。

我国尤其重视5G技术在电网建设中的应用。全球能源互联研究院的白韦等认为首先明确5G技术是否适用于电力无线传输业务是未来电力系统规划和建设的关键,他们通过分析典型的电子无线传输业务与5G技术的兼容性,提出了一种基于灰色系统的无线网络业务与无线网络技术适应度评价模型,对典型的电子无线通信业务和5G技术解决方案之间的适应度进行了评估,结果表明,5G解决方案适用于电网中典型的配电自动化、负载控制业务和分布式发电机和电能数据采集业务,5G技术在电力无线传输领域具有广阔的应用前景。

此外,在我国2018年发布的《5G助力智能电力应用白皮书》及2020年发布的《5G行业虚拟专网网络架构》中都表示5G能更好地在安全可靠数据传输、可管可控等方面助力电力物联网的典型业务应用,推动电力能源管理由粗放型向精细化转变。未来,我国将在政策方面全面支持建设5G业务并合理地运用到电力行业中开发其最大价值,这无疑将推动电力物联网在我国的进一步发展。

2.2 5G技术在电力物联网中的研究现状

ITU定义了5G三大场景:增强移动带宽(Enhanced Mobile Broadband, eMBB)、超高可靠低时延通信(Ultra-Reliable and Low Latency Communications, uRLLC)和大规模机器类通信(Massive Machine Type Communications, mMTC),如图4所示。

图4 5G 三大应用场景

定义eMBB典型的应用包括超高清视频、虚拟现实、增强现实等。uRLLC典型的应用包括自动驾驶、工业控制、远程医疗手术、智能电网、智能运输、公共保护和救灾等的无线控制,这类场景聚焦对时延和可靠性极其敏感的业务。mMTC典型的应用包括智能电网、智能家居和智慧城市等,这类场景对连接密度要求较高,呈现行业多样异构性和差异化。

不难看出,5G的三大应用场景是对电力物联网中数据传输方案三大应用场景的进一步深化。国内外相关专家学者也按照5G的三大应用场景对电力物联网业务进行划分,并开展了相关的研究工作。

2.2.1 电力物联网eMBB场景

eMBB场景主要满足一些高带宽业务需求,是对数据采集类应用场景和业务信息传输场景的加强。目前,电力物联网在这方面的应用主要是电网大视频,包括了变电站机器人巡检、输电线路无人机在线监测、配电房视频监控、移动式现场施工作业管控及应急现场自组网综合应用等。已经有不少研究人员尝试应用5G技术在某些场景中做了实验,并取得了一定成果。

中国联通联合东莞市供电局在变电站内设置了基于5G的无人机110kV线路定点巡航,在回传的高清视频/图像中,能够清晰读取铭牌信息与线路状态,有效提升巡检工作效率。赵雷等基于5G模组开发了巡检机器人,解决了现有4G技术中由于带宽不足导致的视频图像丢帧卡顿、网络延时高等问题,提高了巡检效率。

随着电力物联网建设的不断推进,未来基于多维度感知电网的运行状态是十分必要的,对于大视频的采集必不可少。通常,对于复杂多样性环境的清晰拍摄和录像需要至少200Mbit/s带宽的支持并具备较大范围通信距离,现有的无线传输方式很难同时满足这些要求,而5G将为这项服务的发展提供强有力的支持。

2.2.2 电力物联网uRLLC场景

uRLLC场景是对控制类应用场景和业务信息传输场景的加强,主要包括电力物联网中的无线控制及电力系统调度信息传输等业务。电力系统生产控制区域的不同服务对延迟和可靠性有不同的要求,特定的业务包括分布式配电自动化、分布式能源调控、配电网差动电流保护和用电负荷需求侧响应等。中国南方电网公司在2018年的一份报告中对于未来上述业务的关键需求指标进行了汇总,见表4。

表4 控制类业务需求指标

现有数据传输方案如电力光纤、无线专网等存在成本高、稳定性差、时延较高等多种问题。而5G技术有望为这些需要低延迟和高可靠性的服务提供支持。有关文献都基于5G数据传输技术和差动电流保护系统的结合做了尝试,工程示范中差动保护动作延时大约在67~71ms,且稳定性良好。

为了满足ms级精确负荷控制服务的延迟目标,华为的研究人员提出了一种新颖的物联网-电网(Internet of Things-Grid,IoT-G)数据传输方案,该技术是5G技术完全成熟前的过渡,继承了5G系统的低延迟设计概念,支持频谱聚合技术。现场测试结果表明,IoT-G数据传输方案在延迟、数据速率、容量和共存性方面满足对电网服务的要求。

2.2.3 电力物联网mMTC场景

mMTC场景的关键用途是连接部署的海量感知终端设备,满足海量连接的业务需求,是对采集类业务的全面完善。目前在电网中,一方面,由于数据传输技术的限制,很多感知终端仅收集和上传部分信息;另一方面,局部系统中仅配备了非常稀疏的感知终端,这种“稀疏的数字化”在对设备和系统的运行监测方面留下了诸多盲点,很多值得监测的物理、化学、气象状态及用电信息等数据产生了遗漏。

在电力物联网中通过使用更多的感知设备,可以对电力设备运行状态、电网中的能量流动等进行更加深入的了解,并有助于实现用电环节(分布式电源、充电桩、居民用户等)的信息采集、能效管理、智能电器等双向交互服务。

有学者介绍了智能电网如何受益于5G环境中的先进分布式状态估计方法,概述了新兴的分布式状态估计解决方案,该学者认为,5G的出现将极大地促进广域测量系统所需的分布式信息获取和处理服务的提供,从而为未来分布式智能电网服务的发展提供理想的舞台。

英国爱丁堡大学的Mehdi Zeinali教授和John Thompson教授认为,在所有用户端配备大量基于5G数据传输模块的智能电表能够实现客户和电力公司之间的双向通信,从而优化自动计量基础设施(Automated Metering Infrastructure, AMI),是实现高效能源管理系统的重要一步,仿真结果表明,他们所提出的基于5G的智能计量通信,具有更好的覆盖范围和链路可靠性:在全区域部署情况下,可将停电用户数减少到5%以下。

此外,有学者比较了两种不同的配电网运行监控和控制策略:基于4G的集中式管理方法和基于5G的分布式管理方法,认为电网应用中将需要更大规模、更加普遍的实时监控、数据采集(Supervisory Control And Data Acquisition, SCADA)及控制业务以加强电网中分布式管理能力,这将迫切地需要5G无线传输技术来介入。

​3 电力物联网-5G应用挑战和数据传输方案发展趋势

3.1 5G应用挑战

当前,各类数据传输方案正在不断地发生着演进,v5.2低功耗蓝牙、NB-IoT、xPON光纤、北斗四代卫星等都为电网提供了更高效率的数据信息传输方案,但要满足电力物联网在数字化变革与能源革命下的建设要求,打造具备统一标准、高度响应能力、高鲁棒性和强可扩展性的数据传输网络,还有许多问题亟待解决。

新兴的5G数据传输技术凭借其突出的性能优势、能够利用现有通信基础设施的便利性以及支持网络切片技术等优势逐步取代现有的部分无线和有线传输方案,在响应当前需求的同时,还能够变被动为主动地引导全面性的业务发展,在电力物联网中的应用势在必行。但在应用初期,也可预见性地存在一些挑战,主要包括:

1)5G与现有数据传输方案的融合,共存问题

对于电力物联网数据传输方案的选择,需要综合考虑传输数据密级、业务特征及通信物理环境等问题。5G无法完全取代当前的数据传输方案。例如,对于需要严格保障安全性与可靠性的控制信号、调度语音等数据的传输方面,目前5G技术由于无法排除受干扰及被攻击的可能性,无法替代电力光纤专线在其中的作用。5G与现有多样化数据传输方案的异构化融合将是一项挑战,它们的共存与相互协作将是常态。

2)5G在电力物联网中的时间同步问题

作为通信承载网络中必不可少的支撑部分,时间同步技术在其中起着非常关键的作用。通过解决如何联合卫星技术建设高精度天地一体化时间同步网络;如何优化现有同步传输技术(如1588v2),提高单个终端节点的时间处理精度等问题,从而提供统一时间基准,保证传输数据的有效性,满足同步相量测量、数字差动保护、故障测距等的业务需求显得十分重要。

3)5G终端设备以及通信基站的能耗管理

5G无线传输系统的主要耗电环节是海量的通信终端设备及通信基站。随着电力物联网时代的到来,部署超级密集的通信终端设备及基站,巨大的能耗将是可预见性的,故提升5G数据传输能效对于电力物联网来说十分重要。对于5G终端设备,除了直接入手硬件,开发低能耗器件外,考虑如何利用射频、温差等环境参数获取能量,研究一体化低功耗无源设计将是研究者们思考的方向。对于通信基站,优化基站设置以能效最大化为运营思路、与配电网供需互动[58]并利用可再生能源将是可行的方案。

4)5G无线传输的安全性问题

5G作为新一代无线蜂窝技术,其在电力物联网中使用的通信网络可以是私有的也可以是公有的。在加强电力5G专网建设的同时,共享经济时代下,通过已有通信基础设备组建的公共网络完成电力物联网部分业务数据的传输将是一个趋势。无线传输方式和公共网络的使用都会给电网带来新类型的安全风险。保障5G网络接入安全、5G终端安全、切片安全、边缘计算安全,支持统一的身份管理与认证,支持多元化信任关系构建,探索隐私保护策略,以及建立并分析对应的威胁模型,这些研究都将有助于建立5G无线传输技术在电力物联网中的安全性使用标准。

3.2 数据传输方案发展趋势

对于电力物联网中数据传输方案,其发展趋势主要体现在以下两个方面:

1)顺应数字化发展变革,面向多元化的海量信息

现阶段电网中的数据传输需求主要来自各类电力设备的运行监测与控制,用电信息的采集和电力系统的调度等。但随着电力物联网建设目标中对于分布式采集类业务更加全面深化、控制类业务与主网精准联动等要求的提升,以及对于配合人工智能和大数据技术实现全面感知分析、加强用户侧的双向互动、互联协调多种能源等多层次、多方面新要求的提出,使得电力物联网中的数据流动信息具有更加鲜明的多样性、复杂性、海量化等特点。

在通信内容更加丰富的趋势下,要有针对性地考虑业务通信需求的差异化,实现相互安全隔离、功能可定制的数据传输服务,并在对应带宽、速率、时延等方面做出适应与提升,从而支持电力物联网中多元融合的大数据分析。

2)构建一体化通信架构

面对未来多样化的业务形式和海量的信息交互,需要建立“综合接入、一体承载、业务贯通”的通信架构建设理念。构建一体化的通信网络是必然的趋势,由统一的平台提供安全可靠、承载能力强劲的数据传输网络,进行感知层内基本单元的信息交互、统一向上至平台层的数据接入,或以应用层信息进行对内、对外的反馈、交互,实现业务贯通。一体化的通信网络凭借覆盖面广、资源调配灵活,必将促使电力物联网的信息化、专业化、科学化水平进一步深入。这将为电网的数据共享和能源互动奠定基础,协助未来能源互联网的业务发展。

​4 结论

本文以电力物联网中的数据传输方案为研究对象,首先结合当下的数字化变革和能源革命讨论了在建设电力物联网过程中研究数据传输技术的重要性。通过梳理电力物联网构架,分析了其中的数据传输网络,将数据传输方案根据应用场景划分为采集、控制和业务信息传递三大类,然后梳理、讨论了现有数据传输方案在三大场景中的应用现状,并分析了数字化变革下三大场景的业务深化与变革,提出了数字化变革下电力物联网建设对于数据传输方案的新要求。

当前数据传输方案应对数字化变革乏力,作者认为5G作为无线传输奇点技术将能够应对挑战,于是从5G技术特征出发,分析了5G技术在电力物联网中的适用性,然后对国内外学者在电力物联网场景中的5G应用实验进行了列举和讨论,得出5G技术必将在电力物联网和能源互联网的建设中占有重要席位这一结论。

最后,本文预见了5G应用于电力物联网中将会面临的方案融合、高精度时间同步、能耗管理以及安全性问题,展望了未来电力物联网在朝着能源互联网演进过程中,其数据传输方案将承载多元化的海量信息,并将以一体化通信架构发展。

以上研究成果发表在2021年第17期《电工技术学报》,论文标题为“电力物联网数据传输方案:现状与基于5G技术的展望”,作者为黄彦钦、余浩 等。

相关问答

电力 行业比较著名的学术期刊有哪些?

我国的电力学术期刊很多,主要的有下面这些。1、中国电机工程学报,旬刊,是报道电机工程领域的先进技术和科研成果、交流技术经验和信息、开展学术讨论的国内...

【家电产业为什么 发展 低碳经济】作业帮

[最佳回答]很多的…这是我截的——随着环境的不断恶化,能源使用带来的全球气候变暖问题开始成为各国关注的重点.在这种情况下低碳经济应运而生,成为一...如何...

有没有电气工程比较好的入门书籍推荐?

电工技师手册电力电子技术等等,建议先上网搜索一下主要内容,再根据自己的工作任务,选择适合自己的书籍!书非借不能读也,买书是一个好的选择,但更重要的是...我...

学习物理学史的意义? - 一堆甜椒er 的回答 - 懂得

物理学史是科学发展史,而2113科学是人类发展的核心5261部分。每次4102物理学上的重大突破,都会对人类社会发展产生1653重大影响,产生震撼人心的冲击...

电气工程师学报..._电气工程师_帮考网

《电气工程师学报》是中国电机工程学会主办的电气工程领域的学术期刊,创刊于1984年,月刊。该期刊旨在推动电气工程学科的发展和技术进步,涵盖电力系...

什么叫金融? 金融具体指什么? - carqiu_0317 的回答 - 懂得

信用活动与货币流通紧密联系构成金融活动,是近代资本经济发展起来以后的事情。在自然经济占优势的条件下,信用形式是高利贷,与之同时存在的主要是金...

电气考研哪几个方向能进 电力 局?

它们都是电大类的:就业分析:强电行业是垄断,好多就业去电网呢,待遇没得说;电子信息是弱点,就业也蛮好的,以后软硬件都可以,好多通信设备制造商,运营...它们...

哪些自然科学原理可以用来思考社科问题?

这个问题,意义非同一般,研究大有人在。本该写个文献综述,我不喜欢搬运,还请自搜。以下是我的一些思考,仅供参考。一,关于逻辑思维的公理集。(一)形式逻...引申...

建造一艘航空母舰有多难?

很多人不理解航母造起来为什么难,恐怕是觉得二战时期的航母可以批量下饺子,还可以用其他船只改装,所以才有这种印象流吧。现代能造大船的国家造一条二战时期的...

电力工程 承包范围有哪些-在线法律咨询|律图

电力工程承包范围根据电力工程施工总承包资质不同承包范围则不同,一级资质:可承担各类发电工程、各种电压等级送电线路和变电站工程的施工;二级资质:可承担单机...