复杂电子衍射花样应用 TEM复杂电子衍射花样的标定原理

小编 2025-02-24 电子技术 23 0

TEM复杂电子衍射花样的标定原理

1.1 超点阵花样 当晶体是由两种或者两种以上的原子或者离子构成时,对于晶体中的任何一种原子或者离子,如果它能够随机地占据点阵中的任何一个阵点,则我们称该晶体是无序的;如果晶体中不同的原子或者离子只能占据特定的阵点,则该晶体是有序的。晶体从无序相向有序相转变以后,在产生有序的方向会出现平移周期的加倍,从而引起平移群的改变。由此引发的最显着的特点是在某些方向出现与平移对称对应的超点阵斑点。

上图即是 CuAu3无序和有序的模型和对应的电子衍射花样。其中图 a 是 CuAu3无序时的晶体结构模型,而图 b 是有序时的晶体结构模型;图 c 是与无序对应的电子衍射花样,而图 d 则是与有序对应的超点阵电子衍射花样。

上图是 CsCl 无序和有序的模型和对应的电子衍射花样。其中图 a 是 CsCl 无序时的晶体结构模型,而图 b 是有序时的晶体结构模型;图 c 是与无序对应的电子衍射花样示意图,而图 d 则是与有序对应的超点阵电子衍射花样示意图。

上图是超点阵花样的一些实例, 这些花样是从一种沿[111] 方向具有六倍周期的复杂有序钙钛矿相中得到的。图 a 是沿[010] 方向 2 倍周期有序的超点阵电子衍射花样, 图 b 是沿[101] 方向 2 倍周期有序的超点阵电子衍射花样,图 c 是沿[11-1]方向 2 倍周期有序的超点阵电子衍射花样,而图 d 则是沿[111] 方向 6 倍周期有序的电子衍射花样。1.2 高阶劳埃斑 以入射束与反射球的交点作为原点,构造出与晶体对应的倒易点阵。则对于正空间中的任一晶带轴,与之垂直而且过倒易空间的原点的倒易面,称之为该晶带的零层倒易面,该倒易面上的所有晶面与晶带轴之间满足晶带轴定律,通常我们得到的某晶带轴的电子衍射花样就是该晶带轴的零层倒易面。对于任一晶带轴而言,除了零层倒易面之外,所有与零层倒易面平行的倒易平面都与之垂直,但这些倒易面与晶带轴之间不满足晶带轴定律,它们之间的关系满足广义晶带轴定律,所有与零层倒易面平行的倒易平面统称为高层倒易面。高层倒易面中的倒易阵点由于某些原因也有可能与倒易球相交而形成附加的电子衍射斑点,这就是高阶劳埃斑。高阶劳埃带形成的示意图

劳埃斑产生的原因:1.由于薄膜试样的形状效应,使倒易阵点变长,这种伸长的倒易杆增加了高层倒易面上倒易点与反射球相交的机会;2.晶格常数很大的晶体,其倒易阵点排列更密,倒易面间距更小,使得上下两层倒易面与零层倒易面同时与反射球相交的机会增加;3.当电子衍射花样不正,使得零层倒易面倾斜时,增加了高层倒易阵点与反射球的相交机会;4.电子波的波长越长,则反射球的半径会越小,这样也会增加高层倒易面上的倒易点与反射球相交后仍然能在底片处成像的机会。

高阶劳埃带衍射花样实例1.3 孪晶电子衍射花样 所谓孪晶,通常指按一定取向关系并排生长在一起的同一物质的两个晶粒。从晶体学上讲,可以把孪晶晶体的一部分看成另一部分以某一低指数晶面为对称面的镜像;或以某一低指数晶向为旋转轴旋转一定的角度。孪晶的分类:1、按晶体学特点:反映孪晶和旋转孪晶;2、按形成方式:生长孪晶和形变孪晶;3、按孪晶形态:二次孪晶和高次孪晶。

上图中图 a 和 b 是 CaMgSi相中的(102)孪晶在不同位向下的孪晶花样,图 c 是 CaMgSi相中另外一种孪晶的电子衍射花样,其孪晶面是 (011)面;图 d 是镁中常见的(10-12)孪晶花样。

上图是 CaMgSi相中(102)孪晶中二重孪晶和三重孪晶的形貌和与其对应的电子衍射花样。图 a 是二重孪晶的形貌(暗场像),图 b 是与之对应的二重孪晶花样;图 c 是三重孪晶的形貌像(暗场),图 d 是与之对应的三重孪晶花样。1.4 二次衍射 在电子束穿行晶体的过程中,会产生较强的衍射束,它又可以作为入射束,在晶体中产生再次衍射,称为二次衍射。二次衍射形成的新的附加斑点称作二次衍射斑。二次衍射很强时,还可以再行衍射,产生多次衍射。产生二次衍射的条件:1、晶体足够厚;2、衍射束要有足够的强度。

二次衍射花样形成的示意图

二次衍射花样实例上图是二次衍射中出现多余衍射斑点的两种不同,其中图 a 是在镁钙合金中得到的的电子衍射花样,图中本来只存在两套花样, 分别是镁的[-1100] 晶带轴电子衍射花样和 Mg2Ca相的[3-302] 晶带轴花样。而花样中出现的很多卫星斑是由于二次衍射, 通过 Mg2Ca相的(1-103) 斑点与 Mg的(000-2) 斑点之间存在的差矢平移造成的。图 b 和图 c 是一种有序钙钛矿相中沿[010]p 方向得到的电子衍射花样,其中图 b 是在较厚的地方得到,而图 c 则是在很薄的地方得到。在较薄的地方,由于不存在动力学效应,可以清楚地看到花样中存在相当多消光的斑点, 但在较厚的地方, 由于动力学效应, 出现二次衍射的矢量平移,使得本来应该消光的斑点变得看起来不消光了。1.5 菊池花样 在稍厚的薄膜试样中观察电子衍射时,经常会发现在衍射谱的背景衬度上分布着黑白成对的线条。这时,如果旋转试样,衍射斑的亮度虽然会有所变化,但它们的位置基本上不会改变。但是,上述成对的线条却会随样品的转动迅速移动。这样的衍射线条称为菊池线,带有菊池线的衍射花样称之为菊池衍射谱。菊池花样在晶体材料分析方面,广泛用于物相鉴定、衬度分析、电子束波长以及临界电压的测定等。它更重要的一个应用是用来精确测定晶体取向,用菊池线来测定晶体的取向时,其精度可以达到 0.01°, 是精确测定晶体取向、位向关系和迹线分析的理想方法。

菊池线的形成示意图一电子束在穿透较厚的试样时,入射电子与试样之间会发生相互作用,其中有部分电子会发生非弹性散射。但是非弹性散射之后,它们的能量损失也只有几十电子伏特,相对透射电镜几十万伏的加速电压来说, 这个能量是非常小的, 因此可以认为非弹性散射以后,电子波的波长基本没有变化。因此当这一部分电子波在满足布拉格条件产生衍射时,其几何关系与弹性散射电子可以认为没有差别。非弹性散射电子进入晶体以后,向各个方向散射的几率并不相等,沿透射束方向的散射几率最大,随散射角增大,其散射的几率减小,非弹性散射引起的强度相应地会逐渐降低,这样就形成了衍射照片上中间亮四周渐暗的衍射谱背景(这个背景是由非弹性散射电子形成的,如示意图一所示)。

菊池线的形成示意图二菊池线的形成原理 非弹性散射的电子不与晶体相互作用产生衍射时,在背底上将不会出现明显的衬度,但当非弹性散射电子与某一晶面产生衍射时,会在某些方向产生衬度。如示意图二所示,当 hkl 面不平行于入射束方向时, 从 P点射出的散射线 PQ如果满足衍射条件, 则其反射线 QQ’也会满足衍射条件,即 PR也满足衍射条件。但是对于非弹性散射束而言, PQ 方向的强度要大于 PR方向的强度, 所以产生衍射后, PQ方向的强度为 PQ+RR ’-QQ’, 而PR方向的强度为 PR+QQ ’-RR’。最终的结果, 使得 PQ方向强度有所降低, 这相当于在“山峰附近留下一条暗沟”, 形成暗线;而 PR方向的强度有所增加, 这相当于在“山谷处形成一道矮墙”,形成亮线。对于 hkl 晶面来说,所有可能的衍射方向构成一个半顶角为 90°-θ 的衍射圆锥, 这些射线锥和距离晶体较远而又垂直于入射束的底片相截于两支抛物线, 由于 θ 值很小,这两支抛物线非常接近于直线,因此在底片上得到的成对的菊池线看上去是两条直线。菊池衍射谱的特点1.hkl 菊池线对与中心斑点到 hkl 衍射斑点的连线正交,而菊池线对的间距与两个斑点之间的距离也相等;2.菊池线一般是明暗配对的直线,在正片上距离透射斑近者为暗线,远者为亮线;3.菊池线对的中心线则相当于反射晶面与底片的交线;两条中心线的交点即为两个对应平面所属的晶带轴与荧光屏的截点,一般称之为菊池极;4.当晶体取向改变不大时,衍射斑点基本不移动,但强度会有所变化,但是菊池线对取向非常敏感,当晶体稍微转动时,它会发生非常明显的移动;5.当出现多个菊池极时,实际上已经带出了晶体的三维信息,这个时候就不会有 180°不唯一性。

菊池衍射谱实例

菊池图实例1.6 非晶的衍射花样 1. {Chen, 2004 #2} 衍射斑点规则排列 单晶

2. 衍射斑点散乱 多晶3. 衍射斑点散乱但是隐约能看到环状的轮廓 多晶,晶粒很多

4. 锐利的衍射环 宽化的环,是非晶

5. 弥散的多个衍射环 多个宽化的环,非晶

6. 弥散的一个衍射环 一个宽化的环, 可能是非晶 ,但这么不清楚,有时候试样太厚也会出现这种情况

7. 大衍射斑点中间又有小衍射斑点 Ag 的[111] 面,很有名的 超晶格

8. 有序金属间化合物经常会有弱点出现。此图还不能说是超晶格,只能算是孪位错

9. 衍射斑点规则排列的周围多了一个环, 环上是由多个规则排列的衍射斑点组成。这个比较难找到照片,就用郭先生的书里的示意图贴上来吧

这个就是孪晶的电子衍射,有明显的衍射点分裂现象。

通用单晶电子衍射花样的标定步骤 测量衍射花样上透射斑到衍射斑的三个最短距离 R1、R2、R3 及其之间的夹角:根据公式, d = R/ (L×电子波长),其中 L 是相机常数,底片上写着,单位是 cm,电子波长一般的电镜书上都有,200 kV 电镜是 0.00251 nm。代入计算即可得到相应的 d 值。计算对应的三个面间距值 d1,、d2和 d3,与 JCPDF卡片相比较, 找出相吻合的晶面族指数{h1k1l1} 、{h2k2l2} 和{h3k3l3};在{h1k1l1} 中任选(h1k1l1) 为 A点指数,然后从{h2k2l2} 中试探确定 B点指数(h2k2l2) ,并使得 h3=h1+h2 , k3=k1+k2,l3=l1+l2 ;计算面夹角,与测量值比较,如果计算值与测量值相符则标定正确;? 根据右手螺旋法则计算晶带轴指数。验证标定的正确性 确定 h1k1l1、h2k2l2 和 h3k3l3 后还需要用晶面间的夹角验证标定的正确性。例如,在底片上测得 h2k2l2 和 h3k3l3 之间的夹角 α 为 31.5 度,理论计算(011)和(111)之间的夹角为 31.4 度,理论计算值与实验测量值基本符合,说明标定是正确的。备注:一般晶面之间的夹角理论计算值与实验测量值的误差在 0.5 度之内认为标定是正确的,而且最好将两个角度( h1k1l1 ^ h3k3l3 , h2k2l2 ^ h3k3l3 之间的角度)都验证一下。如果误差超过 0.5 度,那么就需要重新仔细测量实验夹角或重新确定 h1k1l1 、h2k2l2和 h3k3l3。

「教程」 透射电镜电子衍射花样的标定与分析

单晶电子衍射谱实际上是倒空间中的一个零层倒易面,对它标定时,只考虑相机常数已知的情况。因为对于现在的电镜,相机长度可以直接从电镜和底片上读出来,虽然这个值与实际上会有差别,但这个差别不大。之所以要在多晶衍射时考虑相机常数未知的情况,是因为我们经常要用已知的粉末多晶样品(如金)去校正相机常数。相机常数未知时,单晶电子衍射花样标定后可能不好验算,因此除非是已知的相,否则标定非常容易出错。

A、晶体结构已知的单晶电子衍射花样的标定

1.标准花样对照法

这种方法只适用于简单立方、面心立方、体心立方和密排六方的低指数晶带轴。因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。不过需要注意的是,通过标准花样对照法标定的花样,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。所以即使知道该晶体的结构,在对比时仍然要小心。

2.尝试-校核法

a)量出透射斑到各衍射斑的矢径的长度,利用相机常数算出与各衍射斑对应的晶面间距,确定其可能的晶面指数;

b)首先确定矢径最小的衍射斑的晶面指数,然后用尝试的办法选择矢径次小的衍射斑的晶面指数,两个晶面之间夹角应该自恰;

c)然后用两个矢径相加减,得到其它衍射斑的晶面指数,看它们的晶面间距和彼此之间的夹角是否自恰,如果不能自恰,则改变第二个矢径的晶面指数,直到它们全部自恰为止;

d)由衍射花样中任意两个不共线的晶面叉乘,即可得出衍射花样的晶带轴指数。

尝试-校核法应该注意的问题

对于立方晶系、四方晶系和正交晶系来说,它们的晶面间距可以用其指数的平方来表示,因此对于间距一定的晶面来说,其指数的正负号可以随意。但是在标定时,只有第一个矢径是可以随意取值的,从第二个开始,就要考虑它们之间角度的自恰;同时还要考虑它们的矢量相加减以后,得到的晶面指数也要与其晶面间距自恰,同时角度也要保证自恰。

另外晶系的对称性越高,h,k,l之间互换而不会改变面间距的机会越大,选择的范围就会更大,标定时就应该更加小心。

3.查表法(比值法)-1

a)选择一个由斑点构成的平行四边形,要求这个平行四边形是由最短的两个邻边组成,测量透射斑到衍射斑的最小矢径和次小矢径的长度和两个矢径之间的夹角r1, r2,θ;

b)根据矢径长度的比值r2/r1 和θ角查表,在与此物相对应的表格中查找与其匹配的晶带花样;

c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);

d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

3.查表法(比值法)-2

a)测量透射斑到衍射斑的最小、次小和第三小矢径的长度r1, r2, r3;

b)根据矢径长度的比值r2/r1 和r3/r1查表,在与此物相对应的表格中查找与其匹配的晶带花样;

c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);

d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

之所以有两种不同的查表法,是因为有两种不同的表格,它们的查询方法和原理基本上是一致的。

查表法应该注意的问题:

首先查表法标定完了以后一定要用相机常数来验算,因为即使物相是已知的,同一种物相中也会有形状基本一样的花样,但它们不可能是由相同的晶面构成,因而算出来的相机常数也不可能相同;

由两个矢径和一个夹角来查表时,有的表总是取锐角,这样有好处,但查表时要注意你的花样也许和表上的晶带轴反号,所以标定完了之后,一定要用不共线的两矢量叉乘来验算;如果夹角不是只取锐角,一般不存在这个问题;

如果从衍射花样上得到的值在表上查不到,则要注意与你的夹角互补的结果,因为晶带轴的正反向在表中往往只有一个值。

超点阵花样

当晶体是由两种或者两种以上的原子或者离子构成时,对于晶体中的任何一种原子或者离子,如果它能够随机地占据点阵中的任何一个阵点,则我们称该晶体是无序的;如果晶体中不同的原子或者离子只能占据特定的阵点,则该晶体是有序的。

晶体从无序相向有序相转变以后,在产生有序的方向会出现平移周期的加倍,从而引起平移群的改变。由此引发的最显著的特点是在某些方向出现与平移对称对应的超点阵斑点。

上图即是CuAu3无序和有序的模型和对应的电子衍射花样。其中图a是CuAu3无序时的晶体结构模型,而图b是有序时的晶体结构模型;图c是与无序对应的电子衍射花样,而图d则是与有序对应的超点阵电子衍射花样。

上图是CsCl无序和有序的模型和对应的电子衍射花样。其中图a是CsCl无序时的晶体结构模型,而图b是有序时的晶体结构模型;图c是与无序对应的电子衍射花样示意图,而图d则是与有序对应的超点阵电子衍射花样示意图。

上图是超点阵花样的一些实例,这些花样是从一种沿[111]方向具有六倍周期的复杂有序钙钛矿相中得到的。图a是沿[010]方向2倍周期有序的超点阵电子衍射花样,图b是沿[101]方向2倍周期有序的超点阵电子衍射花样,图c是沿[11-1]方向2倍周期有序的超点阵电子衍射花样,而图d则是沿[111]方向6倍周期有序的电子衍射花样。

孪晶电子衍射花样

所谓孪晶,通常指按一定取向关系并排生长在一起的同一物质的两个晶粒。从晶体学上讲,可以把孪晶晶体的一部分看成另一部分以某一低指数晶面为对称面的镜像;或以某一低指数晶向为旋转轴旋转一定的角度。

孪晶的分类:

1、按晶体学特点:反映孪晶和旋转孪晶;

2、按形成方式:生长孪晶和形变孪晶;

3、按孪晶形态:二次孪晶和高次孪晶。

上图中图a和b是CaMgSi相中的(102)孪晶在不同位向下的孪晶花样,图c是CaMgSi相中另外一种孪晶的电子衍射花样,其孪晶面是(011)面;图d是镁中常见的(10-12)孪晶花样。

二次衍射

在电子束穿行晶体的过程中,会产生较强的衍射束,它又可以作为入射束,在晶体中产生再次衍射,称为二次衍射。二次衍射形成的新的附加斑点称作二次衍射斑。二次衍射很强时,还可以再行衍射,产生多次衍射。

产生二次衍射的条件:

1、晶体足够厚;

2、衍射束要有足够的强度。

二次衍射花样形成的示意图

上图是二次衍射中出现多余衍射斑点的两种不同,其中图a是在镁钙合金中得到的的电子衍射花样,图中本来只存在两套花样,分别是镁的[-1100]晶带轴电子衍射花样和Mg2Ca相的[3-302]晶带轴花样。而花样中出现的很多卫星斑是由于二次衍射,通过Mg2Ca相的(1-103)斑点与Mg的(000-2)斑点之间存在的差矢平移造成的。图b和图c是一种有序钙钛矿相中沿[010]p方向得到的电子衍射花样,其中图b是在较厚的地方得到,而图c则是在很薄的地方得到。在较薄的地方,由于不存在动力学效应,可以清楚地看到花样中存在相当多消光的斑点,但在较厚的地方,由于动力学效应,出现二次衍射的矢量平移,使得本来应该消光的斑点变得看起来不消光了。

典型的例子:硅的电子衍射花样,图中红圈内的衍射应该是系统消光的。但(200)可以是(111)衍射电子再发生(1-1-1)衍射的总的效果。这一现象被称为二次衍射或动力学衍射。同理,消光的(222)也可以由两次(111)来产生。(200)也可以通过(111)+(111)+(0-2-2)来产生,只是这种多次衍射的几率更低一些罢了。

电子衍射图谱标定

来源:材料十

「干货」材料裂纹与断口分析方法

「材料学堂」如何从TEM进行区分单晶、多晶和非晶

相关问答

【利用金属晶格(大小约10-10m)作为障碍物观察 电子 衍射 图样...

[最佳回答]A、实验得到了电子的衍射图样,说明电子这种实物粒子发生了衍射,说明电子具有波动性,故A正确;B、由动能定理可得,eU=12mv2-0,电子加速后的速度v...

【求单缝干涉,双缝干涉,多缝干涉,单缝 衍射 ,双缝衍射,多缝衍...

[最佳回答]双缝干涉:条纹等间距,亮度等亮度!多缝干涉:条纹等间距,亮度不等亮度,有主极大,主极大边上有次极大,某些级主极大不存在,缺级!双缝衍射:就是双缝干涉...

什么是光的 衍射 衍射 现象在生活中的现象?

光在传播过程中,遇到障碍物或小孔时,光将偏离直线传播的路径而绕到障碍物后面传播的现象,叫光的衍射(Diffractionoflight)。光的衍射和光的干涉一样证明了...

为什么说简单单晶 电子衍射花样 是uvw?

电子衍射花样是倒易空间,形貌像是正空间,二者本身就是互相垂直的关系,所以形貌像中的线性花样肯定垂直于电子衍射花样,孪晶亦是如此。电子衍射花样是倒易空间...

关于TEN 衍射花样 分析的问题-盖德问答-化工人互助问答社区

在同一个位置做EDS和EELSmapping,不能这样瞎猜的,可能只是个杂质而已应该不是杂质吧,在后面的好几张衍射花样里,我都算出了和上面那张图差不多的d...

这张选区 电子衍射 图怎么分析?图中的点代表什么?-盖德问答-化...

我想请问一下我看很多文献中选区电子衍射图都有如你这张中一样出现一段黑色棒状的东西请问那是什么?仪器的投影么?因为我做的图里面没有所以觉得...

X射线 衍射 过程?

X射线是波长在埃(10-8厘米)数量级的一种电磁波。X射线射入晶体后在晶体中产生周期变化的电磁场,迫使原子中的电子等随之产生周期性的振动。这种振动以球面波...

x射线 衍射 和x射线荧光的原理异同?

单晶衍射可以分析出物质分子内部的原子的空间结构。粉末衍射也可以分析出空间结构。但是大分子(比如蛋白质等)等复杂的很难分析。X射线荧光光谱仪(XRF)是通过...

如何理解物理学名词 衍射 ?什么是 衍射 ?

光线的衍射光线,作为电磁波的可见部分,在银河系的空间范围内,可视为是直线传播的。在遥远的宇宙深空(比如拉尼亚凯亚之外),光线受各个不同大小的引力质心...光...

衍射 极限原理?

衍射极限是指通过光学方法观察物体所能达到的最小分辨距离。这个原理比较复杂,但大致可以用以下三个步骤来描述:当光通过一个孔或缝时,会在物体的边缘发生弯...