电气电子技术应用 电力电子技术的主要应用领域

小编 2024-10-06 论坛 23 0

电力电子技术的主要应用领域

电力电子技术的主要应用领域

电源设计中的电力电子技术

现代计算机和通信等都依赖于开关模式变换器的直流电源,这些电源装置可以是笔记本电脑的电池管理变换器,也可以是服务器簇的冗余供电的多变换器电源,或是程控交换机的电源。它们具有多路独立输出、多电压等级的特点,以供给计算机及其外设和显示屏之需。这种小功率电源系统的设计也处处渗透着电力电子技术的最新成就。

分布式供电技术。给计算机系统供电的分布式结构电源.包括个离线式有源功率因数校正(PFC)电路和后级的不同负载点的多个DC/DC.变换器。这种结构因使用中间电压级来进行功率分N而不同干传统的隆压功率变换结构。近期会采用12V的电压总线或 48V 的电压总线,通过各 DC/DC. 变换器把能量传递到各独立的功能板或子系统中。

高动态响应、低电压(2 V以下,甚至1V以下)输出的高性能计算机电源系统正在开发之中。这就需要高功率密度、低功耗、高效率的性能指标,以及同步整流、多相多重、板上功率变换以及板级互联等新技术。到 2004年初,国外实验室已开发出70 A/1.2V、效率87%的局性能电源。在不久的将来,一种更先进的芯片级的互联技术和功率变换技术将会出现在世人面前。

通信工业是供电电源和电池的最大用户之一,使用范围从无绳电话的小电源到超高可靠性的后备电源系统。例如,维持中央办公区电话网络通信的典型电源系统是一个5kW的功率变换器,它由一个前端离线功率因数矫正(PFC)升压变换器和两个2.5kW 的前向变换器组成。前端离线 PFC升压变换器确保电源系统的可靠供电.后端的前向变换器给电话系统直流48V的配电总线提供大电流输出。该领域甚至有其自己主要的年会——国际通信能源会议(INternational TELecommunication Energy Conference,INTELEC)。

太空中电能的产生和储存都很困难,电源在设计上的限制,诸如重量、效率和可靠性等的严格要求,可以说把对电力电子技术研究的努力推向了极致。

太阳能申池、料申池、执申核能,申池组和飞轮,是卫屋和太空探测器的主要电源和储能装置。在绝大多数情况下,因这些电源功率小日电特性不稳定,因此必须应用电力电子技术把这些能源转换成可用的形式,才能满足使用的要求。

现代太空电源系统非常庞大。例如,一个典型的通信卫星就装备有数百个独立直流电源,为每个网络节点提供最可靠的电能;国际太空站上,用以维持科学探索任务和生命支持系统的冗余电源和馈电设备异常复杂。在太空上。因为所有电能损耗的热量都通过辐射冷却的形式散发到太空中,这些电源系统在高温差和强辐射的环境下要确保其可靠性,其挑战性是巨大的.所以电源系统的热管理尤其重要。当今许多基本的由力由子变换由路 最初都是为太空系统设计的,如早期的DC/DC变换器和燃料电池,就是为20 世纪 60年代的太空计划而开发的.其中包括阿波罗登月计划。当今.美国航空航天局.欧洲的大空署,以及它们的主要技术供货商,都是先进电力电子技术的国际巨头。

电机传动中的电力电子技术

在 20世纪 90年代中期以前,大多数调速系统都由采用晶闸管和双向晶闸管器件的变换器供电,最典型的是晶闸管-直流电机调速系统。20世纪 70年代功率晶体管问世后,在功率等级较低的电机中逐步采用了功率晶体管变换器.以获得较好的申电机调速性能。20世纪 90年代中期以来,大功率IGBT的应用,以及 IGBT逆变技术的成熟和发展,迅速在相关功率等级的应用领域取代了晶闸管和双向晶闸管。早期的逆变器,主要用于步进电机.打印机,机器人以及磁盘驱动器等小功率应用中。在大中功率段常用的交一直一交逆亦器有两类。

IGRT变频器和GTO变额器。这些逆变器开始主要用于20~100kW等级的由机传动系统中。如电动汽车电机传动系统、电力机车的辅助传动系统。随着器件容量和装置功率的增加,逐步应用于容量为300~1 000 kW 及其以上的电机传动中,如地铁列车和高速电动车组的牵引传动系统中。由于装置功率大,低压时电流很大不经济,所以一般用中压(1~10kV)。这两种器件各有优缺山.IGBT开关频率高.但导通压隆和损耗大;GTO电压高,电流大,导通压降小.但开关损耗大、开关频率低。

但考虑到驱动等因素,总体上IGBT要受欢迎得多。针对IGBT和 GTO的优缺点,取长补短,开发出了IGCT(集成门极换向晶闸管),它的电压、电流、导通压降和 GTO相近,门极电压驱动,开关快、频率高,像IGBT。目前,商品化的IGBT逆变器已经做到1 000 kW以上,而像舰船潜艇一类的数千千瓦等更高容量的电机传动系统逆变器仍然须采用GTO 或 IGCT。IGCT逆变器在俄国和韩国已有应用,我国也已试验成功。三相逆变器在大功率电机中的真正实用化,极大地推动了交流电机调速的发展。

电力系统中的电力电子技术

电力系统是电力电子技术应用的一个重要领域。近年来电力电子器件和计算机技术的快速发展,使已有的研究成果和技术不断得到改善。最早成功应用于电力系统的大功率电力电子技术是高压自流输电(HVDC))。

1986年美国电力科学研穿院提出了灵活交流输由(FACTS)概念,相继出现了统一潮流控制器等多种设备。

1988年提出了定制电力(Customer Power)的概念。电力电子技术在电力系统中的应用,如在发电环节中的应用,包括大型发电机的静止励磁控制,水力、风力发申机的变速恒频励磁等。在输电环节中高压直流输电(HVDC)和轻型高压直流输电(HVDC Light)技术。近年来,轻型直流输电采用IGBT组成换流器应用在脉宽调制技术进行无源逆变;灵活交流输电(FACTS)技术是"一项基于电力电子技术与现代控制技术对交流输电系统的阻抗、电压及相位实施灵活、快速调节的输电技术"。

在配电系统中的应用,如动态无功发生器、电力有源滤波器等,以加强供电可靠性和提高电能质量。电能质量控制既要满足对电压形率,谐波和不对称度的要求。又要抑制各种瞬态的波动和十扰。电力电子技术和现代控制技术在配申系统中的应用.是在FACT各项成敦技术的基础上发展起来的电能质量控制新技术。

汽车工业中的电力电子技术

汽车工业领域已成为电力电子技术的主要增长占之—。现在人们习惯上说的治车由子实际上就是汽车工业中的电力电子技术。电力电子在新一代汽车上主要应用于以下方面;用电力电子开关器件替代传统的机械开关和继电器;用电力电子控制系统对车上负载进行精密控制∶利用电力电子技术改造原有的12V电源系统,使之成为多电压系统;使用适合电力申千控制的、更先进的驱动申动机。预计在不久的将来.从小功率的车窗 座椅控制。到大功率电传动系统,都蕴涵着电力电子技术的最新成就。

电子点火器,电压调节器,电动机驱动控制和音响系统是当前电力电子技术在汽车工业中最普遍的应用。现代汽车采用电子点火系统,要点燃气缸里的混合气体需要几千伏的电压,应用升压变换器和耦合变压器正在取代传统的火花塞。全电子控制的电助力驾驶系统正在某些车型上采用、这种系统应用电力电子技术控制电机,协助转动驾驶杆,改进了驾驶响应速度,降低了能耗,并消除了皮带传动的噪声,正在取代传统的皮带传动的液压泵。

电制冷空调系统也开始在汽车上装备。汽车头灯的强光灯和尾灯的高亮度LED灯也需要电力电子技术以有效的形式传递电能。一个重大的技术进步是要提高汽车电控系统的电压等级,近期将采用40-50 V等级取代目前的 10~15V等级。比如,汽车音响系统立体声功率放大器通常能传递 40W甚至更大的功率,但12V的供电电源在8 Q的扬声器上最大只能产生18 W的输出,采用电力电子升压变换器可给功率放大器电路提供更高的电压,使之达到家用音响的效果。

在电动汽车和混合动力汽车的主电气系统中.电力申子都起着决定件的作用。纯电动汽车具有高性能、零排放,低成本的优点.但目前仍受电池的阳限制。混合动力汽车采用各种各样的设计方案,把发动机和电驱动系统结合在一起,充分发挥各自的优点。两种汽车的能量控制单元都是逆变器和 DC/DC. 变换器,其容量在千瓦级以上。

采用更高电压、传递更大电流的新型充电器已经诞生。比如一种称为 Hughes 的感应充电器就很有新意。它使用一种类似乒乓球拍的不导电磁性拍板进行感应充电。该磁性拍板相当于变压器的一次侧,它把工频电压转变为80 kHz 的交流电。电动汽车中的充电埠相当于变压器的二次侧,它把高频交流电进行整流和调节.然后对汽车里的电池组进行充电电力电子技术更是电动汽车的核心技术之一,最为主要的是驱动电动机的电传动系统。汽车电传动系统通常由电力电子变换器、电池和控制系统构成。目前新型的电动汽车采用感应电动机,无刷永磁电动机开关磁阳电动机等多种形式.容量从几十到几百干瓦不等,正在逐步取代传统的直流电动机驱动。电力电子变换技术的发展为汽车的新型传动方式提供了坚实的技术保障。

绿色照明中的电力电子技术

照明是人类文明的永恒需求。电光源在 100多年里经历了"白炽灯一直管荧光灯—高压放电灯—节能荧光灯—无灯丝灯"等几代产品。

20世纪 80年代,随着电力电子变频技术的发展成熟,高频应用又促成某些更新一代电光源的诞生,从此,电力电子在绿色照明中开始占有重要的一席之地。可以说,照明技术的迅速变革,是电力电子技术在其中起了主要作用。

一个典型的例子是,紧凑型节能灯和电子镇流器的问世,吹响了以照明节能为核心的绿色照明的前奏曲。采用不同成分的稀土荧光粉可制成各种色温的气体放电节能灯,发光率比常规荧光灯提高一一倍,可以做成各种形状便干紧率安装,替代白炽灯T。可节电75%~80%采用电力电子技术做成的电子镇流器实际上是一个电子变频器(从50 Hz变换到30 kHz以上)加一个高频电感镇流器。

由于频率提高,di/dt 高,不再需要配置起辉器,在供电电压降低或环境温度较低的场合也能使灯管正常工作,此外,在几十千赫频率下消除了气体放电灯的烁和音颗噪声。 采用申子镇流器后,高频电感比工频电感重量减轻几十倍,节省材料 80%左右,灯管的实际工作寿命延长3~5倍.同时能提供更好的可靠性、更低的损耗、更高的亮度。由于电子镇流器体积小、反应快,它可以在照相机闪光灯和汽车灯等应用领域中使用。应该说,电子镇流器是电力电子高频化应用中的一个典型产品,许多的电力电子新技术——功率因数校正、谐波抑制、零电压开关、多种保护等都可以在高性能电子镇流器中得到应用而提高其可靠性和改善运行参数。

新能源开发中的电力电子技术

在全球气候变化和世界石油、煤炭等化石能源日益紧缺的今天,低耗高效和寻找开发新能源是根本出路,因而,可再生能源以及燃料电池受到世界各国的高度重视。再生能源是指可自行再生的能源,如日光能、风能、潮汐能、地热能以及生物废料能等。从燃料电池、微燃气轮机.风能,太阳能和潮汐能等新能源中得到的一次电能,难以直接被标准的电气负载使用.所以.将其高数而经济地转换为民生用电 。已成为先进科技国家兼环保和发电的重要产业政策。电力电子是解决能源问题的关键技术,它对新能源的开发、转换、输送、储存和利用等各方面发挥着重要作用。

太阳能发电站一般有两种方式。一种方式是把太阳能转换为热液体后再发电,如太阳能热电厂。由液体加热系统产生蒸汽以推动涡轮或发电机热厂中的热能位储存装置可保证连续发电;另一种方法是直接把太阳能转换为电能,太阳能光伏变频器把太阳能电池板获得的原始低电压直流电变换为所需要的交流电,或直接供负载使用,或将电能馈入市电。光伏发电有广大的市场发展潜力,先进国家不仅政策性地发展太阳能技术,而且立法制定法规来规范产业安全标准。太阳能电池板获得的电压大小和功率与许多因素有关,如太阳照射角度、云层遮挡水平、季节气候变化等,所以要对光伏发电的中间直流电压进行可调的升压变换处理。

随着再生能源技术的发展,"分布式发电系统"将得到事大的发展空间。所谓分布式发电系统是指∶借由诸如风力发电、太阳能发电.天然气发电等区域性发电系统连接而成的公共发电系统。微电子技术、电力电子技术应用于电力网络与输配电系统,形成一个智能型分布式再生能源网络。讲一步的发展是再生能源网络与信息网络结合形成个整合信自和电力网络的未来生活环境,实现电能的网络化。

综述︱电磁发射系统中电力电子技术的应用与发展

中国电工技术学会将于2016年12月23日(周五)在北京铁道大厦举办“2016第三届轨道交通供电系统技术大会”。

请感兴趣的读者扫描下方的二维码,或关注微信公众号“电气技术”,浏览会议详情和进行快速注册报名。注册时请准确填写相关信息,会议服务人员将及时与您确认参会事宜。

海军工程大学舰船综合电力技术国防科技重点实验室的研究人员马伟明、肖飞、聂世雄,在 2016 年第 19 期《电工技术学报》上撰文指出,近年来随着电力电子技术的飞速发展,推动了电磁发射技术稳步走向工程应用。

本文列举了电力电子技术在电磁发射储能系统、脉冲功率变换系统、闭环运动控制系统中的典型应用,并对后续加快电力电子技术的发展提出了几点建议。

电磁发射装置是一类利用脉冲功率发生装置产生的电磁力推动负载达到最大速度的装置,它的实质是将电磁能变换为发射载荷动能的能量变换装置[1-4]。电磁发射系统主要由储能系统、脉冲功率变换系统、脉冲发射装置和闭环运动控制系统四部分组成,如图1所示。

图1 电磁发射系统组成

电磁发射系统的工作原理是:储能系统以较小的功率长时间地从电网吸收和存储能量;当储存的能量满足发射所需后,一旦接收到发射命令,立即向脉冲功率变换系统释放能量;脉冲功率变换系统将储能系统释放的电能变换为脉冲发射装置工作所需的脉冲电能,产生电磁力推动发射体运动;闭环运动控制系统实时地控制发射体的运行轨迹,确保在预定的位置将其加速至设定的末速度,完成发射任务。

图2展示了电磁发射技术在军事领域及民用领域的广泛应用需求和前景。以航母舰载机发射系统为例,相对于传统的蒸汽发射,电磁发射具有过程可控性好、发射机种类多、应急响应快、出动率高、可维护性和适装性良好等显著优势。

图2 电磁发射技术应用

电磁发射本质上是能量的变换,为实现这一能量变换过程,需要应用大量的电力电子装置及相适应的控制技术,对电力电子装置在总体设计、拓扑结构选择、控制系统设计以及辅助系统的设计等方面提出了很高的要求,具体体现在:

1发射过程具有超大功率、脉冲式、间歇循环式的工作特点,要求电力电子装置具备大幅调节电流和电压的能力;2可靠性要求极高,系统设计时在硬件和软件上需采用冗余设计;3在主电路拓扑结构的选择和设计方面,受到单个开关器件功率等级的限制,通常需要进行器件级、单元级以及装置级的串并联集成;4发射过程中,控制对象呈现显著的非线性特征,对参数辨识和控制器的设计提出极高的要求;5装置之间的信息流错综复杂,对于控制系统的时序配合和同步提出了很高的要求;6在特定的应用场合下(如水上、水下、陆上移动平台上),对装置的体积、重量、噪声、散热等方面提出了严苛要求,要充分考虑到电磁发射系统脉冲间歇式的工作特点,进行装置设计和系统集成,以满足系统的功能及性能指标。

综上,正是由于电磁发射系统对电力电子装置强烈的应用需求以及对性能、可靠性、适装性等方面的极高要求,促进了电力电子技术在电磁发射系统中的应用和升级,推动了电力电子学科的发展。下文着重介绍电力电子技术在电磁发射储能系统、脉冲功率变换系统以及闭环运动控制系统中的典型应用。

2 能量存储与释放技术

2.1 储能方案设计与对比

电磁发射装置瞬时功率极大(100MW级至GW级),按能量的存储形式,现有的储能方案主要有三种:1化学储能,如蓄电池、超级电容器和脉冲电容器等;2机械能储能,如飞轮储能;3超导储能。

表1列举了以上三种储能方式的优缺点。超导储能虽然具有能量密度大、效率高、响应速度快的优点,但由于运行环境要求苛刻、影响超导带材失超的因素较多、体积重量较大等原因,暂时还处于机理研究及实验样机研制阶段。结合电磁发射系统工程化和可靠性等方面的要求,下文主要介绍惯性储能系统的逆变装置和励磁装置、超级电容器充电装置的设计和控制。

表1 三种储能方式的对比分析

2.2 功率柔性输出逆变装置的设计及控制

储能系统逆变装置的本质是一台具备变频变压调速功能的变频装置,能够以较小的功率拖动或制动储能电机[5-7],采用大容量多电平电力电子变流器的模块化设计方案[8,9],其电路拓扑如图3所示。

图3 储能逆变装置主电路拓扑

储能电机作为电磁发射系统的脉冲电源,其转速在发射期间将发生大幅跌落。高转速大突变系统的控制稳定性问题是储能逆变装置的关键问题,难点在于:

1转速测量的时延,在高速系统中会造成更大的角度偏差,极大的降低了控制器的稳定裕度;2储能电机始终工作在加速或减速过程,发射期间,储能拖动电机转速的急剧变化使得转速的精确测量变得更加困难,严重时甚至会导致磁链和转矩解耦失败;3储能拖动电机的转速突然剧烈变化,会导致电机的输出转矩突然变化,从而使得电机输出电流剧烈变化,从而增加了储能逆变装置对输出电流的控制难度。

为解决高转速大突变系统的控制稳定性问题,主要从以下几方面进行改进:

1改进转速测量算法,采用带有转速预估的隆伯格转速观测器进行转速预估,从而尽量降低转速测量的时延和误差,保证在高速段转速测量及角度测量的正确性;

2通过对高压大功率IGBT三电平电路特点的分析,实现了储能逆变装置损耗的准确计算,优化逆变装置的散热设计,最大程度地提高逆变装置的开关频率;

3在控制算法中,基于输出功率变化率限值,实时调整输出功率的最大值,确保储能装置的输出功率和功率变化率不超出限制,大大降低了储能电机转速大范围快速变化时对电网的冲击,实现逆变装置对储能拖动电机的柔性控制。

采用上述改进后,电机在高转速和大突变条件下仍然可以实现转矩电流的精确跟踪,并保证控制的稳定性。电机转速、d轴和q轴电流波形如图4所示。

图4 实验验证波形

2.3 储能电机能量脉冲释放控制技术

与普通发电机励磁系统的要求不同,电磁发射储能电机的励磁装置需要在很短时间内大幅度提高输出功率,即快速强励过程。励磁装置通过急剧增大励磁机的励磁电流来快速提高主发电机的励磁电流,满足电磁发射期间励磁调节快速性的要求[10-12]。

图5为储能电机励磁装置及其控制系统原理框图,励磁装置包括励磁控制器、励磁电流功率放大器、转枢式励磁机及旋转整流器。励磁系统的工作原理为:励磁电流功率放大器在励磁控制器控制下,向转枢式励磁机的励磁绕组提供励磁电流,实现第一级励磁功率放大;励磁机转子电枢输出交流电压,经同轴的旋转整流器向主发电机转子上的励磁绕组提供励磁电流,实现第二级励磁功率放大。

图5 储能电机励磁控制系统原理框图

为了满足电磁发射所需的短时强励功能,储能电机励磁装置采用了以下措施:

1采用电压双象限H桥电路拓扑,克服了励磁绕组平均电压低与较高的励磁电压(励磁电压高响应速度快)导致的PWM控制信号占空比过低的矛盾,大大提高了励磁电流输出调节的响应速度;

2针对储能发电机转速快速下降、输出功率短时大幅线性增加的工况,采用前馈加双闭环反馈的励磁控制策略,提高了励磁电流指令的变化速度,大大加快了控制系统电流环的响应速度和电压环的调节精度;

3在前馈控制中分别引入电压分量和电流分量的超前校正网络,克服了系统大惯性时间常数造成的影响,进一步提高了系统响应速度[13-16]。

图6为励磁装置在发射过程中的励磁电源电压、输出电流和励磁电源电流波形。可以看出励磁电源电压基本稳定,输出电流和励磁电源的电流呈线性增加。

图6 励磁装置输出线性增加的电流

2.4 脉冲电容器储能装置的充电控制技术

电容型脉冲功率电源是导轨式电磁发射装置的供电能源,其中脉冲电容器是其核心储能元件。与传统的电容器不同,因电磁发射作用时间短且储能规模大,从而兼具超大能量和超高功率输出的特点。以32MJ动能导轨式电磁发射为例,其单次输出能量达百兆焦、瞬时输出功率达数十吉瓦。在需要连续快速发射的场合,单一储能难以满足该要求。

海军工程大学提出了导轨式电磁发射装置应采用混合储能方式供电,其原理如图7所示,电路简图如图8所示。混合储能的核心思想是将电网能量在较长时间内以较小功率存储在电池中,在需要发射时,在短时间内将能量传递至电容器中,最终在毫秒级瞬时以超大功率由电容器提供给负载。混合储能利用化学储能的高能量密度和物理储能的高功率密度,实现了能量的压缩和功率的放大。

图7 电池+电容型混合储能装置原理图

图8 利用蓄电池对脉冲电容器充电电路简图

在直流斩波、恒压充电和台阶式充电等充电方式中,海军工程大学提出了图8所示的台阶升压式充电方式,用于实现电池对脉冲电容器的快速充电。台阶升压式充电结构简单,具有近似恒流的输出特性,且开关频率低、损耗小。

为了实现能量转移过程的精确控制,电池对脉冲电容器的充电采用双环控制策略,外环采用均衡控制方法,降低蓄电池大倍率放电时的发热量,保证放电一致性,延长使用寿命;外环采用时序串联控制方法,并引入时序重构算法,满足对脉冲电容器的精准快速充电。

3 脉冲功率变换技术

储能电机输出的电能不能直接供给脉冲发射装置,必须通过脉冲功率变换系统将电能经过交-直-交环节,变换成幅度、频率、相位及相关动、静态指标符合要求的电能。发射装置如果采用分段供电的形式,还需要通过分段切换开关输送给脉冲发射装置。

3.1 脉冲式整流装置的设计

电磁发射脉冲整流装置的输出功率需从0到几十MW迅速变化,且以脉冲间歇的特殊模式运行,装置要承受剧烈的脉冲冲击,这对其晶闸管触发控制的精度和响应速度都提出了很高的要求。

脉冲功率变换整流装置选择可控硅作为开关器件,正常工作时,可控整流桥处于不控整流工作模式,此时最简单、可靠的触发方式为持续施加触发脉冲。但在脉冲超大功率应用场合,持续触发方式会带来极大的暂态损耗;而如果采取实时相控来准确控制晶闸管触发脉冲投切的话,由于整流桥输入频率、输入电压快速变化,并且输入电压波形畸变严重,给相控策略的实现带来了很大难度,也将大大增加控制的复杂性,随之带来装置可靠性的下降。

针对电磁发射整流装置特殊的工作特性,在综合考虑触发板损耗与系统可靠性的基础上,脉冲功率变换整流装置的触发脉冲采取脉冲列的形式,脉冲列的高、低电平占空比均为50%,既能保证晶闸管对触发脉冲持续时间的要求,又能在较大程度上减小触发板损耗,触发脉冲列如图9所示。

同时针对晶闸管功率脉冲进行优化,触发控制逻辑会主动撤除不必要的触发脉冲来降低门极功耗,因而门极功耗安全裕量增大,可以使用更强的触发脉冲来增强晶闸管的动态性能。大部分情况下依靠预触发脉冲即实现了晶闸管的可靠导通,实际工作中触发电路需要发送的触发脉冲的数量很少,触发控制策略能有效控制门极功耗。

图10为晶闸管的端电压、阳极电流和触发脉冲波形,可见依靠预触发脉冲即实现了晶闸管的可靠导通。

图9 触发脉冲电压电流波形

图10 晶闸管端电压、阳极电流、触发脉冲波形

3.2 脉冲式逆变装置的设计

脉冲式逆变装置的单台容量达几十MV·A,输出电压达几千伏、输出电流高达上万安培,如何在现有开关器件功率等级、拓扑及控制方法的条件下,突破高压多电平逆变器的关键技术具有极高的挑战性[17,18]。

为了满足电磁发射系统性能指标的要求,逆变装置可采用如图11所示的二极管钳位H桥级联混合九电平拓扑结构[19-22],以二极管钳位三电平半桥单元为基本单元的模块化结构。

图11 脉冲功率逆变装置主电路拓扑

为了提高脉冲功率逆变装置的电流输出能力,结合大功率电力电子器件的发展现状,脉冲功率逆变装置采用了器件和装置两级并联的思路:

1二极管钳位式三电平半桥单元采用IGBT并联技术,增加了开关器件的功率冗余性,降低了工作损耗;

2主从两台脉冲功率逆变装置并联工作,共同为脉冲发射装置的一相定子绕组供电。受装置的体积、重量以及线路压降的限制,逆变器的输出不宜配置均衡电抗器进行并联,这对输出电缆的布置以及主从逆变器控制脉冲的精确同步提出了严格要求。

IGBT并联工作时,由于器件本身参数的分散性、驱动电路的不一致性以及外围电路分布参数的差别,将导致并联IGBT的静态和动态电流不均衡。通过实验发现,外围电路对并联均流的影响是主要因素。

通过对二极管钳位三电平拓扑结构的各种开关逻辑切换的换流过程进行分析,对主回路复合母线结构的分层和进出线进行了初步设计,通过对复合母线开不同类型的电气孔进行并联器件外围电路对称性的匹配,确定了最佳的母线方案,母线模型如图12所示。

图12 复合母线Q3D模型

通过采取以上措施,并联运行的逆变装置均流效果良好,输出电流波形如图13所示,电流不均衡度控制在5%以内。

图13 并联逆变器输出电流波形

3.3 分段供电技术

在发射行程较长的应用场合,为了提高电磁发射系统的效率和功率因数,降低系统对电源容量需求,需要采用分段供电技术,利用位置传感器实时检测动子的运动位置,实时切换通电定子区间,实现与动子耦合的紧邻数段定子模块通电,而其他定子模块不通电[23]。分段供电技术主要包括分段供电切换策略和切换开关设计技术。图14为脉冲发射装置分段供电的示意图。

图14 脉冲发射装置分段供电示意图

在段与段切换供电的过程中,电机不可避免地会出现错位、并联等特殊模态,切换不当甚至会出现缺相模态。不同的切换策略将会导致直线电机出现不同的特殊模态,或者是特殊模态持续的时间有所不同。这些特殊模态会对发射推力造成不同程度的影响,必须对分段供电策略进行深入研究。

通过建立考虑分段切换供电暂态过程的脉冲发射装置数学模型,对错位、并联、缺相等特殊模态进行定量研究,结果表明分段切换策略应遵循的基本设计原则是:绝对地避免缺相模式,尽可能减小并联模态运行的时间。

采用三相电流过零时依次切换的方法,错位模态不可避免,但错位模态仅在切换的短暂过程中导致电流尖峰,对发射推力的影响较小。

图15 脉冲发射装置分段供电拓扑结构

图15为脉冲发射装置分段供电的典型拓扑结构。电磁发射过程中,切换开关处于高电压、大电流、温度等应力叠加的暂态过程,对切换开关本体的可靠性提出了极高的要求。

理论和实践证明,半导体器件失效、损坏以及性能劣化的绝大多数原因归结为温度超标。当工作电流大于500A时,采用双面压接是最可靠的散热方式。大功率切换开关采用双面压接安装方式,实现主电路的两极同时散热,热阻最小,散热效果最好。

在结构设计方面,两只晶闸管采用背靠背压接的方式充当交流阀,并在它们的阳极与阴极之间并联接入阻容吸收保护模块,基于晶闸管反向恢复电荷动态特性,优化计算阻容吸收参数[24],解决高压大电流分段切换开关切换过程中易过电压击穿的技术难题,以保证分段切换开关的运行安全。

4 电磁发射的闭环控制技术

闭环控制系统是电磁发射系统的大脑,负责调节储能系统的能量释放,控制脉冲功率变换系统的能量输出,对脉冲发射装置输出电磁力的精确控制,满足不同发射载荷对速度和加速度的要求[25-27]。

图16为闭环控制系统框图。轨迹生成算法生成理想的发射轨迹曲线;位置观测算法根据从位置传感器获得的位置编码信息,观测出直线电机动子的瞬时位置和速度;位置控制算法实时计算出动子实际轨迹精确跟踪预设发射轨迹曲线所需的给定电磁力的大小;矢量控制算法计算直线电机定子所需的励磁电流和转矩电流;最后通过电流闭环控制算法获得直线电机定子的电压指令,下达给脉冲功率变换系统,实现了“信息流”对“能量流”的控制,保证发射目标的实现。

图16 电磁发射闭环控制系统原理框图

电磁发射系统由多个能量链组成,利用冗余提高了可靠性,同时对多个能量链的同步控制和故障条件下的系统重构提出了极高的要求。

闭环控制系统采用:1计算同步、PWM脉冲同步等多种同步技术,既实现了多个储能装置功率和能量释放的均衡控制,又实现了多台直线电机之间出力的均衡控制;2当一个能量链故障时,电机的磁路和电路均会发生改变,相应电机参数也会发生改变。电机闭环控制器能较好地适应控制对象的变化,在发射的恒加速阶段维持了直线电机输出电磁力的稳定。

针对电磁发射的直线电机存在多定子耦合、边端效应、气隙变化等非理想因素的问题,电机闭环控制器采取考虑耦合、不对称性的控制方法,取得了很好的控制效果[28-30];直线电机控制器具有较宽的调速范围,实现了零转速工况下的矢量控制;电机闭环控制器采用轨迹观测与矢量控制结合的控制方法,通过优化设计给定轨迹,结合精确的轨迹控制算法,使得发射过程具备较好的位置跟随性能,很好地满足了发射任务的要求,典型发射过程中的轨迹误差如图17所示。

图17 闭环控制轨迹误差

5 总结和展望

电磁发射由技术设想转变成工程应用,标志着发射技术发生了历史性的变革。随着电力电子装置集成化、模块化和能量密度的不断提高,电磁发射技术将快速的升级换代,电磁发射系统的发射能力将快速增长,体积、重量、成本、系统复杂程度会降低,这将使得电磁发射的应用领域将迅速拓展。

除了在军用武器发射形态领域的转化应用外,电磁发射系统中的电力电子技术也可广泛用于民用相关领域。例如将电机惯性储能的关键技术应用于风电场,可以起到削峰填谷的作用,大大改善风力发电系统功率波动对电网的影响,对我国推广大功率风力发电具有重要意义;将闭环控制技术应用于轨道交通系统,可以大大提升地铁、高铁的控制可靠性和自动化水平;将电磁发射技术应用到航天发射,具有发射成本低、环境污染小、可重复快速发射等优点。

同时,立足我国电力电子技术的发展,可在以下几方面继续深入开展应用及基础研究,持续牵引和提升电力电子理论与技术发展:

1)深入器件内部,研究其工作机理,建立电力电子器件及其组合混杂系统多时间尺度的动力学表征,在此基础上查明器件极端工况下的可靠性量化评估方法,进而建立电力电子器件尽限应用理论,实现电力电子混杂系统的精确设计,为电磁发射系统的高功率密度和高可靠性提供有力的支撑,特别是应用于舰船中压大电流、短时脉冲间歇式工作等场合。

2)加强开展研究新结构、新材料的电力电子功率器件制备与应用研究,避免走跟踪研仿的老路子,实现我国电力电子器件的跨越式发展。

3)研究电力电子电能变换数字控制中时延特性、量化误差对装置性能影响机理等基础问题,并通过电力电子装置控制网络信息流的优化设计,实现能量流的精确控制。

4)开展基于多学科交叉的大容量电路级和系统级电力电子系统集成优化设计方法,充分发挥现有器件的性能,实现电力电子系统的集成化、模块化、标准化和智能化,使电能变换和控制技术得以更新换代,弥补和减小由器件本身性能与国外的差距而造成的电力电子设备或系统性能的巨大差别。

“2016第五届新能源发电系统技术创新大会”演讲报告精要版已在“分布式发电与微电网”微信(微信号:dggrid)上陆续发布,请感兴趣的读者关注阅读。

相关问答

【电力 电子技术 具体 应用 有哪些?实例具体分析】作业帮

[最佳回答]拿逆变器来说,具体应用例如UPS,光伏逆变及其并网等等,再掌握一些控制算法(PID控制,模糊控制,状态反馈控制等等各种吧)的数字实现(DSP),那么你就基本...

电子技术应用 是学什么课程有哪些

[回答]计算机操作及应用、电工原理、电子技术、逻辑设计、微机原理、高频电路、电子线路CAD、电子线路设计与工艺、PCB设计与制作、工业电视、检测技术、...

电力 电子技术 应用 领域主要有哪些?

电力电子技术主要应用(根据适用场合分类):石油、煤炭等开采行业电控设备:2.电动汽车领域:《电力电子技术》是我国唯一的国家级电力电子刊物,也是电力电子...

电力 电子技术 应用领域 主要有哪些 - sFe6PjacI6q 的回答 - 懂得

电力电子技术主要应用(根据适用场合分类):石油、煤炭等开采行业电控设备:主要设备,晶闸管直流电动机系统;变频器和交流调速系统。市场前景,石油、煤...

电子技术应用 是什么?

应用电子技术培养目标:本专业培养德、智、体、美、劳全面发展,具有大学本(专)科文化层次,掌握电子技术、信号与系统、通讯技术、计算机应用技术的基础知识...

电力 电子技术 中的主要功能有?

电力电子技术是一门新兴的应用于电力领域的电子技术,其主要功能包括:1.电力电子器件制造技术:包括晶闸管、IGBT等器件的制造和封装,用于控制和变换电能。2...

电力 电子 在电力系统中有哪些 应用 ?

主要用来做控制部分,电力系统一般是强电,强电需要用弱电来控制,这就要用电力电子技术,比如说过电压保护器,避雷器,低电压补偿,SVG,APF等产品都跟电力电子...

为什么选浅析电力 电子技术 在电力系统中的 应用 ?

主要用来做控制部分,电力系统一般是强电,强电需要用弱电来控制,这就要用电力电子技术,比如说过电压保护器,避雷器,低电压补偿,SVG,APF等产品都跟电力电子...

什么是电力 电子技术 ?

电力电子技术分为电力电子器件制造技术和变流技术(整流,逆变,斩波,变频,变相等)两个分支。现已成为现代电气工程与自动化专业不可缺少的一门专业基础课,...

急!急!急!关于 电气工程 及其自动化专业选修课,哪些对专业就...

提到这三门不是因为其他课不重要,是因为不了解,基本上除了微特电机控制其他的我都没听过,看到评论说数控技术这门课很好,建议楼主可以选上,但我没学...