新发现,将为未来的自旋电子应用,开启新的磁性特性
一项理论与实验合作的研究,发现了二维结构中的新磁性能,这对自旋电子学新兴领域研究具有令人兴奋的潜力。自旋电子器件除了使用传统电子器件的电荷外,还使用一种称为自旋的量子特性。因此,自旋电子学有望实现具有显著增强功能的超高速低能电子设备。rmit和新南威尔士大学的研究发现,在由数层新颖的二维材料组成,被称为vdW异质结构的器件中,存在着从未见过的磁性能。
最新结果表明,与传统的自旋电子学方法相比,vdW自旋电子学可以为器件提供更多的功能。进一步的研究可以产生具有重大工业应用价值的设备。二维(2-D)范德华(vdW)材料是新一代自旋电子器件的有效组成部分。
(此处已添加圈子卡片,请到今日头条客户端查看)当用非磁性vdW材料(如石墨烯和/或拓扑绝缘体)分层时,可以组装vdW异质结构,以提供其他无法实现的器件结构和功能。科学家们研究了二维Fe3GeTe2 (FGT),在之前的一项研究中,发现这种金属在自旋电子器件中具有很好的铁磁性,在材料中发现了一种前所未见的巨磁电阻(GMR)模式。
不像传统,已知的两个GMR状态(即高阻和低阻)发生在薄膜异质结构中,研究人员还测量了反对称GMR与一个额外,不同的中间电阻状态。这表明vdW铁磁异质结构与类似结构表现出本质上不同的性质,这一令人惊讶的结果,与之前关于GMR的观点相反。这表明vdW异质结构具有不同的物理机制,具有改进磁信息存储的潜力。理论计算表明,这三种电阻水平是石墨/FGT界面自旋动量锁定诱导自旋极化电流的结果。
合著者FLEET博士Cheng Tan说:这项工作对二维材料、自旋电子学和磁学的研究具有重大意义。这意味着传统的隧穿磁阻器件、自旋轨道转矩器件和自旋晶体管可能会得到重新研究,利用类似vdW异质结构来揭示类似的惊人特性,其研究成果研究发表在《科学进展》上。该实验的详细电子输运测量是由CI教授王兰(RMIT)和副主任亚历克斯·汉密尔顿教授(UNSW)领导的研究人员合作完成,使用的是由王兰教授团队在RMIT制造的异质结构和设备。
更强大的电子自旋现象被发现,有望为下一代存储技术铺路
东京工业大学(Tokyo Tech)的科学家们报告了一种新的材料组合,它为基于自旋的磁性随机存取存储器(RAM)奠定了基础。这项创新可能会让目前的存储设备取得巨大进步。
自旋是电子的固有属性。在一项新研究中,他们提出了一种使用拓扑材料中相关电子自旋现象的新策略,这可能推动自旋电子学领域的多项进展。此外,这项研究还进一步探索了自旋现象的基本机制。
自旋电子学是一个新兴的领域,它主要涉及电子的自旋和电子角动量。事实上,现代电子技术中广泛使用的磁性材料,就是因为电子自旋阵列使其具有了奇特特性。研究人员一直试图操纵某些材料的自旋相关特性,特别是用于非易失性存储器的材料。磁性非易失性存储器 (MRAM) 在功耗和速度方面有超越当前半导体存储器技术的潜力。
图 | 拓扑绝缘体 (TI) 材料的自旋注入会逆转铁磁 (FM) 材料的磁化,这就是 “写” 操作。此外,自旋注入还可以改变材料的整体电阻,所以外部电路可以感知这些电阻,这就是 “读”操作(来源:应用物理学杂志)
由东京工业大学 Pham Nam Hai 副教授领导的一组研究人员,最近在《应用物理学杂志》(Journal of Applied Physics)上发表了一项关于单向自旋霍尔磁阻 (USMR) 的研究。自旋霍尔效应会导致具有特定自旋的电子在材料的侧面聚集,它在拓扑绝缘体材料中表现得尤为强烈。将拓扑绝缘体与铁磁半导体结合在一起,自旋霍尔效应可以产生巨大的单向自旋霍尔磁阻。
当自旋相同的电子聚集在两种材料之间的界面时,由于自旋霍尔效应,自旋可以注入到铁磁层并发生磁化翻转,实现内存的写入操作,这意味着在存储设备中可以重写数据。同时,由于 USMR 效应,复合材料的电阻随磁化方向的变化而变化。这时使用外部电路可以测量电阻,实现内存的读取操作。在这个过程中,数据可以使用与写入操作相同的电流路径读取。
然而,现有材料组合使用传统的重金属作为自旋霍尔效应的材料,使得由 USMR 效应引起的电阻变化是非常低的,远低于 1%。这阻碍了利用这种效应的 MRAM 的发展。此外,USMR 效应的机制似乎因材料的组合而异,目前还不清楚哪种机制可以将 USMR 效应提高到 1% 以上。
为了了解材料组合如何影响 USMR 效应,研究人员设计了一种由镓锰砷化物 (一种铁磁半导体) 和锑化铋 (一种拓扑绝缘体) 组成的复合结构层。通过这种组合,他们实现了 1.1% 的 USMR 效率。结果显示,利用铁磁半导体中的磁振子散射和自旋无序散射两种现象,都可以得到很好的 USMR 效率,这也使得这一研究在实际应用中成为可能。Hai 博士说:“我们的研究首次证明,USMR 效率有可能超过 1%。这比使用重金属的 USMR 效率要高几个数量级。此外,我们的结果提供了一种新的策略,以最大限度地提高实际设备的 USMR 应用效率。
本研究对自旋电子学的发展具有重要意义。传统的 MRAM 结构需要大约 30 层超薄层,这是非常具有挑战性的。通过使用 USMR 效应进行读取操作,只需要两层存储单元。Hai 博士总结说:“进一步的材料工程研究可能会进一步提高 USMR 效率,这对于结构极其简单、读取速度极快的基于 USMR 的 MRAMs 来说是至关重要的。我们的研究成果是朝着这个目标迈出的重要一步。”
相关问答
【 自旋电子 到底是什么?它真是一种神秘力量吗?】作业帮[最佳回答]量子力学中称为“自旋”的量有时被认为所有物理量中最“量子力学”的.这样,我们对之稍微多加注意是明智的.什么是自旋?它本质上是粒子旋转的度量.“...
量子技术有什么 应用 前景?量子技术的应用很广,这里先介绍一下量子通信、瞬间移动,量子计算机,量子芯片,量子隐身衣1.量子通信所谓量子通信是指利用量子纠缠效应进行信息传递的一种新...
科学:热胀冷缩在生活中的 应用 事例和解释,怎么每个人提问啊我...[最佳回答]1冬天水管破裂;2、夏天自行车打气不能打太足.3买来的罐头很难打开,是因为工厂生产时放进去的是热的,气体膨胀.4温度计.5高压电线夏天下垂多,冬天绷...
自旋电子 材料博士真实待遇?自旋电子材料博士的待遇因公司、地区、经验等因素而有所不同。一般来说,该领域的研究人员月薪可以达到1.5-3万左右,但也有一些公司提供更高的薪资和福利待遇。...
量子力学当中的 自旋 可以看做与地球的自转相类似吗?质子自旋势能:Epp=mc²≈938MeV。电子的绕旋动能,即电子的轨道角动能,可表现出电子热力学温标:Ek=½mv²=3×½kT。读者可自行计算电子轨道运动的温度。绕...
粒子 自旋 会变吗?会变的。电子自旋假设是经典物理学是无法接受的。如将电子自旋视为机械自旋,可证明电子自旋使其表面的切向线速度将超过光速。正因为如此,这一假说一开始就遭...
什么叫 自旋 过滤效应?磁场和电子跃迁能量间隔的变化引起了自旋电子隧穿概率和隧穿电导都呈现出量子台阶效应,磁场的增加使电子的回旋频率和Zeeman能级分裂同时加强,从而导致量子...
为什么存在那么多的 自旋 定律?自旋是一把万能解锁工具。汽车轮子在转是自旋、风扇叶子在转是自旋、风车在转是自旋、摔了跟斗转了几圈也是自旋……这还没完,平衡也是一把万能解锁工具。汽车轮...
请问,原子的核外 电子自旋 方向是可以频繁改变的吗?不大噶。他们存在在各自的轨道中,能级不同。而且他们要保持自己的基台,其次你要知道除第一个壳层以外,其他壳层里面还含有若干个亚壳层,比如第二个壳层中就含...
两个 电子 , 自旋 方向相反,他们之间的相互作用是怎样的?一、这个问题不能叫问答、叫猜答!因为目前只有通过量子场论所公认的电子自旋的磁距来说明、电子自旋确实有极性、而且泡里不相容原理给出了准确的结论、两个...