电子自旋高速操控实现 高效低耗电子器件更“近”一步
来源:科技日报
科技日报讯 (洪恒飞 柯溢能 记者江耘)科技日报记者5月6日从浙江大学获悉,该校物理学系郑毅研究员课题组与联合团队,首次在黑砷二维电子态中发现了外电场连续、可逆调控的强自旋轨道耦合效应,实现了对自旋的高速精准控制;同时在全新的自旋—能谷耦合的Rashba物理现象中,发现了新奇的量子霍尔态。相关论文当天刊发于国际期刊《自然》。
电子是人们日常生活中熟悉的“陌生人”:每个电子携带一份内禀的电荷,其集体运动产生的电流驱动了照明、晶体管以及各种电子设备的运行。然而作为一种基本粒子,电子还携带另外一个基本物理量,即自旋。如何操控自旋,研制速度更快、能耗更低的电子器件是自上世纪90年代以来科学和工程领域孜孜追求的目标。
常见的晶体管运行,通过场效应在沟道中注入和抽离电荷实现开关。但作为与电荷具有同等内禀地位的自旋却极容易受到干扰,无法简单地生成运动控制阀门。“要实现自旋驱动的电子器件,就必须先有效地操控自旋的取向,进而可以用自旋阀门来控制电子的通过与否。”郑毅介绍说,重元素二维材料体系使得电子自旋的高速精准控制成为可能。
郑毅团队在对薄层黑砷微纳器件的研究中,成功发现加入外电场时,黑砷二维电子态系统的自旋轨道耦合效应可连续、可逆的打开和关闭。这也为后续自旋器件的开发找到了一个控制电子通行的高速开关。
“该研究将对高效率、低能耗自旋电子器件研制提供坚实基础,对进一步加深量子霍尔现象的理解,以及依托拓扑超导器件的量子计算研究具有积极意义。”谈及应用前景,郑毅说,未来,科研人员有望利用自旋轨道耦合实现高效的自旋调控,开发自旋场效应晶体管等电子元器件。
科学家构建基于金属纳米团簇自旋阀器件,可开发新型自旋存储器件
近年来,国家纳米科学中心研究员唐智勇课题组围绕超结构纳米材料开展了一系列原创性研究,包括新型超结构纳米材料的合成制备、超结构组装与形成机制、超结构的物理化学性质探究、以及相关领域的应用探索。
图 | 唐智勇(来源:唐智勇)
其中,具有原子级结构精确可调控的金属纳米团簇,是其一直非常关注的研究方向之一。在前期研究中,他们从金属纳米团簇的合成制备出发,系统研究了这类新型有机-无机杂化纳米材料有别于传统纳米材料的一些独特性质,从而进一步探索了其应用,比如基于组装超结构的分离、催化、手性光学、以及电磁学器件等。
近年来,自旋电子学以及自旋器件是一个全新的研究方向。相比于传统的电磁器件,自旋电子器件为构建低能耗、高稳定性的储存元件提供了新机遇。
而自旋阀正是一种典型的自旋器件,目前已广泛用于商用存储器件中。自旋阀主要由两个具有不同矫顽力场的铁磁性电极和一个夹在中间的非磁性夹层组成。
传统的无机和有机的半导体材料都已被广泛地作为非磁性层来制备自旋阀,但其各自的输运机制很不相同,同时也各有优缺点。
而通过巧妙结合无机半导体和有机半导体优点,新型的无机-有机杂化材料有望进一步提升自旋器件的相关性能。
在这样的研究背景之下,该团队尝试性地将这种具有离散能级、可调控磁化性质、强库仑阻塞和强光电响应等特性的金属团簇,运用在了这一领域里。
非常欣喜的是,他们构筑的基于 Au25 团簇自旋阀器件,在室温条件下就被观察到了非常明显的磁电阻信号。对于金属团簇独特物化性能的理解、以及在自旋器件等方面的应用,都具有重大意义。
近日,相关论文以《金属纳米团簇基自旋阀中的室温自旋输运》(Room-Temperature Spin Transport in Metal Nanocluster-Based Spin Valves)为题发表在Angewandte Chemie 上 [1]。
可以说,课题组构建了首例基于金属纳米团簇的自旋阀器件,并且系统性地探究了金属团簇的自旋输运性能,发现 Au25 自旋器件获得了室温 1.6% 的磁电阻。伴随的光响应特性,还证实了自旋极化载流子在 Au25 中自旋相干输运。
更有意思的是,他们发现了与 Au25 相比在结构上仅差一个 Au 原子的 Au24 基自旋器件的无室温磁电阻信号。这种结构依赖明显不同的自旋输运性,研究团队将其归因于结构依赖的自旋-轨道耦合效应。同时,该工作对于深入理解纳米团簇的量子性质和未来开发高性能自旋阀器件都具有启示作用。
受益于金属团簇温和的制备条件、易于加工成膜性、结构稳定性和性能可调控性,该成果实现了传统无机和有机半导体材料作为自旋阀器件性能的优缺互补,有望用于新型自旋存储器件的开发。
据介绍,此次实验课题的确定,来自于唐智勇与国家纳米科学中心孙向南研究员的一场讨论,此前双方都想通过合作解决交叉科学领域中一些广为关注的关键问题。
孙向南是有机自旋器件领域的专家,对于有机材料的设计、器件的搭建、评价等具有丰富的经验和夯实的研究平台。而唐智勇团队在新型超结构材料方面的设计、制备和性质探究等方面,也有着多年的积累。
这样一次偶然的交流,让两个团队做出了如下设想:运用新型的有机-无机杂化材料作为自旋器件的分离层,可能会产生一些新的效应。研究中,他们一开始也是以尝试为主,简单而言就是试错,毕竟化学本身也是一门试验性科学。
在不断的试错和总结中,合作团队发现在室温下,某些具有特定结构的金属团簇也能表现出明显可观测到的自旋输运性能。这样一个实验结果,不仅引发了大家的研究兴趣,更对试错方向提供了指引。
后续,他们又相继合成多种不同结构类型的团簇,并且对其自旋输运性能进行评价。最后一步则是对构-效关系进行探究,双方根据观测到的实验现象和结构,对团簇的结构进行了分类,进一步对其机制进行了深入探究。
另据悉,唐智勇团队非常关注的另一个方向是无机手性纳米材料的开发和应用。有研究发现,在不加外界磁场的前提下,手性本身也对于自旋电子有一定的筛选作用。
这意味着,基于手性纳米材料的自旋器件可以替代外界磁场,这会给存储器件带来更多应用前景。因此,开发手性超材料的自旋器件及其性质探究,是该课题组后续关注的主要方向之一
参考资料:
1.Zhu, Y., Guo, L., Guo, J., Zhao, L., Li, C., Qiu, X., ... & Tang, Z. (2022). Room‐Temperature Spin Transport in Metal Nanocluster‐Based Spin Valves.Angewandte Chemie.
相关问答
Everspin 1Gb STT-MRAM存储 器件 有着怎样的特点?Everspin近日宣布,其已开始试生产最新的1GbSTT-MRAM(自旋转移力矩磁阻)非易失性随机存取器。去年12月的时候,其已发布了首批预生产样品。新MRAM器件...E...
非常规反铁磁体有什么用途?非常规反铁磁体具有多种用途。一方面,它们可以应用于磁存储、传感器和快速磁领域切换器等领域,带来更高的性能和更低的能耗。另一方面,它们对于实现量子计算...
纳米技术可以用在什么方面?1.信息产业中的纳米技术:信息产业不仅在国外,在我国也占有举足轻重的地位.2000年,中国的信息产业创造了gdp5800亿人民币.纳米技术在信息产业中应用主要表现在3...
量子计算机目前的进展是什么?这些年来,量子计算话题的讨论达到了前所未有的热度。行业及媒体一直在不断强调,量子计算机有望“在众多学科当中带来突破”、“彻底改变我们的经济、工业、学...
量子计算在2018年会取得哪些新的进步?量子计算在2017年迎来大规模商用,虽主要还是摆在云端上进行计算加速工作,还没有办法走入寻常百姓家,但包括IBM、D-Wave以及英特尔。我们都知道,量子计算...
合成高度稳定的马鞍型有机单线态双自由基分子有何重要意义?-...开壳多环芳烃由于具有独特的非线性光学、电学和磁学性质,引起人们极大的研究兴趣,在有机电子学和自旋磁电子学器件中具有巨大的潜在应用价值。请问在开壳层分子...
任天令导师怎么样?任天令导师很厉害,任天令,1971年9月出生于山东省济南市。1997年博士毕业于清华大学现代应用物理系。现为清华大学微电子所教授,博士生导师,微纳器件与系统研...
为什么磁悬浮能使物体在磁场中漂浮运动?要实现磁悬浮是很困难的,如果给你多少块永久磁铁你都不可能实现磁悬浮,虽然磁铁的同性相斥,以为很易实现磁悬浮。网上或自制的简单的磁悬浮都必须有一个固定支...
量子计算机的发明会让世界再无密码可用吗?主要原因在于现有的芯片线程越来越小(纳米级),量子力学现象会成为计算机的Bug,这个Bug具体来说是这样的,计算机里面有很多晶体管,晶体管像一个开关控制电子...
将一通电螺旋管线圈放入超低温环境变成超导状态,磁场强度如何?这个局域的高正电荷区会吸引自旋相反的电子,和原来的电子以一定的结合能相结合配对。在很低的温度下,这个结合能可能高于晶格原子振动的能量,这样,电子对将不...