光子在电子行业应用 面对集成度物理极限 光子芯片如何另辟蹊径

小编 2024-11-28 电子应用 23 0

面对集成度物理极限 光子芯片如何另辟蹊径

集成电路系列报道③

总体而言,光子芯片具有高计算速度、低功耗、低时延等特点,且不易受到温度、电磁场和噪声变化的影响。其不追求工艺尺寸的极限缩小,突破了工艺的限制,有更多的性能提升空间。

中科创星董事总经理

张思申

几十年来,英特尔联合创始人戈登·摩尔在1965年提出的摩尔定律,不仅成为计算机处理器的制造准则,某种程度上也被看作科技行业的前进预言。

然而,自从1958年仙童半导体公司发明集成电路后,以硅为基础的电子芯片已经发展了几十年。

如今,电子芯片的承载能力已经逼近了物理理论的极限。

光子芯片的出现,被看作突破摩尔定律的有效途径之一。

相比电子芯片有独特优势

“光子芯片简单说就是利用光信号进行数据获取、传输、计算、存储和显示的芯片。”中科创星董事总经理张思申向科技日报记者解释,相对于电子驱动的集成电路,光子芯片的独特优势十分明显。未来,无论是互联网、5G还是物联网领域,在基础设施方面都离不开光纤和光学器件。

据张思申介绍,相比传统的电子芯片,光子芯片有很多优势,主要表现为高速率和低功耗。光信号以光速传输,速度得到巨大提升;理想状态下,光子芯片的计算速度比电子芯片快约1000倍。光子计算消耗能量少,光计算功耗有望低至每比特10—18焦耳(10—18J/bit),相同功耗下,光子器件比电子器件快数百倍。

另外,光具有天然的并行处理能力以及成熟的波分复用技术,从而使光子芯片的数据处理能力、容量及带宽均大幅度提升;光波的频率、波长、偏振态和相位等信息可以代表不同的数据,且光路在交叉传输时互不干扰。这些特性使得光子擅长做并行运算,与多数计算过程花在“矩阵乘法”上的人工神经网络相契合。

“总体而言,光子芯片具有高计算速度、低功耗、低时延等特点,且不易受到温度、电磁场和噪声变化的影响。”张思申说,光子芯片可以采用硅基半导体工艺来制造,形成光波导等无源器件。并且不追求工艺尺寸的极限缩小,突破了工艺的限制,有更多的性能提升空间。此外,光子芯片提供了全新的芯片设计架构思路,彻底颠覆原有的设计理念,有更多的设计创意空间。光子芯片可以与三五族化合物半导体形成的发光器件封装在一起来实现光电集成。未来将过渡到异质集成,实现真正的光电集成芯片。

人工智能时代的基础设施

张思申表示,光子计算芯片通常由一个电子芯片部分和光子传输部分来组成,电子芯片负责逻辑运算,读取传输由光波导来实现。而在未来的光计算系统中,可以把光子芯片理解为电子芯片的“高速公路”,它帮助电子芯片分担包括线性计算、数据传输、内存读取等在内的这些相对耗时的操作。

“光子芯片是人工智能时代的基础设施,可以广泛应用于高速传输、远距离感知、人工智能计算处理领域。”张思申说。

他举例说明:在5G通信领域,光通信已经得到了相当广泛的应用,现在的云计算和数据中心中,已经大量采用了基于光子芯片的光收发模块,谷歌现在已经是全球最大的光器件采购商。在人工智能领域,光子芯片是一种光计算架构与人工智能算法高度匹配的芯片设计,可应用于自动驾驶、安防监控、语音识别、图像识别、医疗诊断、虚拟现实等关键人工智能领域,并已经得到了实际应用。在光计算方面,类脑光子芯片模拟人脑的计算,通过光子携带信息在模拟大脑的神经网络构架下处理数据,使芯片达到像人脑一样高速并行且低功耗的计算。包括IBM、英特尔,以及国内的一些企业和研究院所都在研发光CPU。“不过,硅基光电子产品的大规模商用还需时日,光计算市场还需要时间培育。”他坦言。

此外,在光感知方面,基于光子技术的激光雷达是当下的热点技术和应用方向,特别是在无人驾驶行业的应用,推动了行业的发展。在生物医药、纳米器件等的内部结构实现高分辨无损检测的新型计算显微关联成像装备中,光子芯片均可以发挥其高速并行、低功耗、微型化的优势。

在空间激光通信领域,光子芯片是解决目前空间传输速率瓶颈问题的主要技术手段,另外还有星间互联网、6G通信、智能遥感测绘等国家战略安全和战略需求领域,而这些都是需要对大数据进行高速、低功耗、实时处理的。光子芯片在这些国家战略领域将起到非常重要的支撑作用。

电子芯片仍占主导地位

尽管光子芯片的优势明显,但张思申直言,目前在芯片领域,电子芯片仍占据主导地位。特别是存储领域,仍是电存储芯片的天下,光存储还未实现量产突破。在传输相关领域,如光通讯上,光子芯片已经被大量使用,占主要地位。在逻辑运算领域,未来的趋势是光电集成的结合,还需要很长一段时间逐步替代,才能实现全光计算。“总体来说,目前只在个别计算和传输领域,光子芯片可以取代电子芯片的地位。”他说。

从工艺上看,光子芯片摆脱了对摩尔定律不断缩小工艺尺寸的依赖,从而降低了对先进工艺的需求,一定程度上减轻了当前芯片发展的关键问题。“实际上我们可以看到,很多实现量产的高端光子芯片来自海外,这一现状需要我们国内的光子芯片企业不断努力,提高产品性能,提高国产化率。”张思申说。

“如今光子计算仍处于早期阶段,最大的挑战来自于对于光计算芯片上光学器件密度的提升。在这一全新赛道上,我们虽然没有前路可以借鉴,但发展前景令人十分期待。光学计算已经在商业化道路上迈出了重要的一步,相信在未来的两三年内,我们可以看到光子计算芯片的应用,开启计算革命。”张思申说。

延伸阅读

布局光子芯片产业 各国均在路上

目前,全球多个国家出台政策,扶持光子产业发展。国外领先的半导体企业也都纷纷在光子芯片领域重金投入,以求在未来的竞争中占据主动地位。

2018年1月,工信部发布了中国光电子器件发展五年路线图(2018—2022),其中明确提及中国光通信器件产业目标:2022年中低端光电子芯片国产化率超过60%,高端光电子芯片的国产化率突破20%。

国内的华为、光迅、海信等公司都在光子芯片领域进行了布局。据张思申介绍,目前在光通讯中低端光子芯片领域我们实现自主供货,高端光子芯片也逐步走向成熟。近几年国内也出现了一些优秀的光子芯片初创公司,如陕西源杰半导体在国产激光芯片领域实现大规模量产,打破了国外垄断;曦智科技2019年4月发布了全球首款光子芯片原型板卡,并通过流片验证,计划从2021年起为AI云计算带来高效的量产产品。(崔 爽)

来源: 科技日报

光子与电子到底是个什么关系?

经常听到“光电相互转换”、“光子能产生电子”的说法,这些不准确的提法容易对公众造成误导,因此决定写一篇文章进行澄清,希望对大家认识光子与电子有所帮助。

光子与电子都是极小的“东西”,我们能看见光,但看不见电子,这并不代表电子比光子更小,事实上电子是这个世界上目前已知第二小的粒子,比电子更小的是中微子。那么光子呢?物理学中的光子它实际上只是能量的载体。

光子与电子的关系

是不是有点晕?本文就跟你讲明白,光子与电子究竟是什么。

电子的客观存在

电子是一种基本物质粒子,它在原子核的外围高速运行。到目前为止,科学家们都无法将电子打散,它被认为是不能分割的粒子。我们通常会将原子核想象成太阳,将围绕着原子核运动的电子想象成围绕太阳旋转的行星,比如水星、地球或木星,但事实上并不如此。

太阳系的行星围绕太阳作椭圆运动,电子可没这么老实

氢原子是世界上最小也是最简单的原子,它的原子核就是一个质子,质子带一个正电荷,围绕着这个质子运行的只有一个带负电荷的电子,电子由于静电引力的作用围绕着质子运动。即便如此,电子的运动轨迹也不是一个圆或椭圆。由于电子绕核运动的速度接近光速,当我们观察这个电子时,它的运动轨迹更像是地球周围的“大气层”,电子会随机出现在原子核周围“大气层”的任何一个点上,这些点形成一个“壳层”,我们称之为电子云。

氢原子的电子云

对于拥有更多电子的复杂原子来说,它的每一个电子都会出现在自己的概率区,这是由每个电子各自的能级所决定的,物理上将这些概率区称为电子轨道。按照泡利不相容原理,每个电子轨道最多只能被两个电子占据,并且这两个电子的自旋方向必须相反。

为什么电子并不会像行星那样老老实实地呆在自己的椭圆轨道里,而是围绕着原子核“乱窜”?这是因为电子在运动过程中不断地向外辐射能量,同时它也会从外部吸收能量。我们知道电子是有质量的粒子,尽管电子是轻子,它的质量极小,只有约0.511MeV/C²(约9.109×10⁻³¹千克),但当它以极高的速度围绕原子核运动时,由于电场偏转也会对外释放出能量,这个能量以光子的形式向外发射。当电子的能量减少,它的轨道就会降低,角动量也将发生细微变化。反过来,当电子与外来光子发生碰撞时,光子会将自己的能量传递给电子,这将推高电子的轨道,因此电子会在自己基态轨道上不停地变化运行轨迹。如果电子获得的能量足够大,它会发生能级跃迁、跳到更高轨道,甚至脱离原子核的束缚变成一颗自由电子。

当我们给氢以不同能量,它的电子轨迹就会产生相应变化

光子的波粒二象性

对于量子物理学来说,光子实际上是一份一份的能量,它被称为“光的能量子”。虽然光子兼具粒子的特性,但它不是一个具体的粒子,这有点像“声子”和“胶子”。目前普遍接受的物理理论暗示或假设光子是严格无质量的,这意味着不存在光子这个“东西”,所以光子的停止质量被定义为0。光子一产生就以光速在运动,它是能量,按照爱因斯坦相对论中质量与能量的关系,我们认为光子拥有“动质量”。

光子没有静止质量,电子有质量

如果光子不是严格无静止质量的粒子,按照相对论,任何有质量的物体不会以真正的光速c运动。光子的速度将取决于它的频率,肯定比光速更低。但相对论不会受到光子质量的影响,因为在相对论中所谓的光速c不是是光子移动的实际速度,而是一个自然常数,它是任何物体在理论上可以在时空中达到的速度上限。因此在相对论中,光速仍然是时空波纹(引力波和引力子)的速度,但它不是光子的速度。

光子是否拥有静止质量对于麦克斯韦方程和库仑定律的影响更大,库仑定律将被迫做出修改,许多我们熟知的物理学定律也将随之进行修正。但到目前为止,光子静止质量的问题还在科学家们不断地求证之中。

光子的波属性

虽然像所有的基本粒子一样,光子表现出波粒二重性,兼具波和粒子的双重特性。但光子的波和量子质量是单个现象的两个可观察的方面,我们不能机械地描述它。也就是说我们不能说光的能量处于光波前的某些点,也不能在空间定位光量子。

鉴于光子的这些特性,我们明白了,不能将光子与电子相等同,光子不是电子,光子也不会凭空产生出电子。

那么光电效应是怎么回事?

难道太阳能电池里的电子不是由光子产生的吗?

光电效应不是凭空创造出电子

当光照射到任何材料表面时,它会将能量传递给目标,其中一部分能量会传递给电子。电子接收到光的能量会引发自己的动能变化,从而冲到更高的能级,如果电子吸收到的电子能量不足以使自己摆脱原子,它会释放一个光子,然后回到自己原来的轨道上;而当最外层电子获得足够的能量,它会摆脱原子的束缚,变成自由电子。

由此我们可以看出,光电效应并不是光子产生了电子,而是电子接收到光的能量,从而使自己变成自由电子,当材料中的电势积聚,就可以产生电流。

总结:

光由物质的运动产生,电子在其运动过程中由于轨道发生偏转而对外释放能量,原子核内部基本粒子在运动过程中也会对外释放能量,这种能量的释放大多表现为光的发射。

电子激发可以产生不同波长的光

光子由物质不断产生,物质因为向外释放能量而使其自身的质量产生变化。与此同时,物质也在不断地吸收其同围的光子,以平衡其质量亏损。

根据经典物理学的定义,光子没有静止质量,但光子在以光速运行的过程中拥有动质量,这个动质量是其本身能量的体现。

电子不会凭空产生也不会凭空消失,电子可能会衰变成伽马射线光子和能量,但这个过程极其漫长,根据计算电子的平均寿命将高于6.6×10²⁸年,它也许会比宇宙的寿命更长久。当一个电子与一个正电子相遇,它们会发生湮灭,产生两个或两个以上伽马射线光子和强大能量,这种情况在恒星内部经常发生,它是恒星中核聚变的中间过程。

综上所述,电子与光子是两种完全不同的东西,电子是物质的基本粒子,而光子更多地表现为能量的片段;电子在运动和湮灭过程中可以释放光子,但光子并不能凭空产生电子,它只能给电子以能量,使其动能发生改变,甚至脱离原子变成自由电子。

关于光子与电子,你明白了吗?

相关问答

光子 有什么特性和作用?】作业帮

[最佳回答]从波的角度看,光子具有两种可能的偏振态和三个正交的波矢分量,决定了它的波长和传播方向;从粒子的角度看,光子静止质量为零,电荷为零,半衰期无限长...

光子 电子 、原子之间有什么联系?】作业帮

[最佳回答]光子是电磁波,电子是实物粒子与电磁波是两回事\x0d电子与光子这两种粒子的根本区别——光子没有自旋,电子有自旋.\x0d电子与正电子相遇时将湮灭而转...

光子 电子 的区别是什么?如何 应用 ?

电子最早出现在历史舞台应该是在1858年,科学家们在研究低压气体放电时,会有一道类似于“光”的射线从电极(阴极)中发出,当时的人们并不知道这是什么东西,就叫...

光电技术 应用 是什么?

光电技术是一种将光电子技术与电子技术相结合的技术领域,能够将光信号转换成电信号或将电信号转换成光信号,并将它们进行传输、控制和处理等方面的运用。光电...

超声波在工业、农业、医疗和军事的 应用 _作业帮

[最佳回答]1、超声波的应用1.超声检验.超声波的波长比一般声波要短,具有较好的方向性,而且能透过不透明物质,这一特性已被广泛用于超声波探伤、测厚、测距、遥...

光子 电子 的区别及优势?

一、性质不同1、电子:是带负电的亚原子粒子。2、光子:是传递电磁相互作用的基本粒子,是一种规范玻色子。二、作用不同1、电子:电子束科技,应用于焊接,...

光子 如何转变成 电子 的?

在地球环境下,光子是不可能转化成电子的。光伏电池在阳光下之所以能发电,不是光子产生了电子,而是光能把电子由正极搬到了负极,由于二极管的单向导电,电子还...

现在的仪器可以把 电子 转化成 光子 吗?为什么?

看到有一个童鞋问了这么一个问题:现在的仪器可以把电子转化为光子吗?为什么。这还真是个有意思的问题,我看了一下其他朋友给出的回答,有人说“系不系傻,灯...看...

电子 是什么! 光子 电子 的区别?

光电子的概念主要指通过光电效应产生的电子或电离电子的总称。光电效应是在某些物质表面振荡的电子吸收一定能量的光子后,解离了物质的束缚力,从而使电子从物...

电子 一直在产生 光子 吗?

电子的实质是虚空能量体,光子的实质也是虚空能量体,只不过她们的本质和结构有所差异而已。由于同属能量体的电子与光子都是没有质量中心的(有质量中心的属于质...