探索物质结构之透射电子显微镜
眼睛是人类认识客观世界的第一架“光学仪器”,但它的能力却是有限的,通常认为人眼睛的分辨率为0.1 mm。17世纪初,光学显微镜(图1)出现,可以把细小的物体放大到千倍以上,分辨率比人眼睛提高了500 倍以上,这也是人类认识物质世界的一次巨大突破。随着科学技术的不断发展,直接观察到原子是人们一直以来的愿望,电子显微学的出现为人们实现这一夙愿提供了可能。随着电子显微学的不断发展和进步,透射电子显微镜(图2)的分辨率已经达到了亚埃量级,电子显微镜已经成为材料学领域不可或缺的表征手段。另外,电子显微学与纳米科学、生物学等的结合,使得电子显微镜的功能日渐扩大,同时它也促进了这些领域的飞速发展。
图1 罗伯特·胡克发明的光学显微镜(图片来源:百度网)
图2 HT7700-日立透射电子显微镜(图片来源:百度网)
透射电子显微镜的起源与发展透射电子显微镜起源于20 世纪20~30 年代。1924 年,德布罗意提出了粒子具有波动性。1926—1927 年,Davisson、Germer 以及Thompson Reid 实验发现了电子衍射,从而证明了电子的波动性,因此想到可以用电子代替可见光来制作电子显微镜,以克服光波长对分辨率的限制。1926 年,德国学者Busch提出采用轴对称的磁场有可能使电子聚焦,为电子显微镜的制作提供了理论依据。1933年,Ruska 等人做出了世界上第一台透射电子显微镜。1934 年,电子显微镜的分辨率已经达到了500Å,Ruska 也因此获得了1986 年的诺贝尔物理学奖。1939 年,德国西门子公司造出了世界上第一台商品透射电子显微镜(TEM),分辨率优于100 Å。之后,美国Arizona 洲立大学物理系的Cowley 教授等定量地解释了相位衬度像,即所谓高分辨像(高分辨TEM 图像见图3),从而建立和完善了高分辨电子显微学的理论和技术。高分辨电子显微术能够使大多数晶体中的原子列成像,目前高分辨电子显微术已经是电镜中普遍使用的方法,其分辨率已经达到了1~2 Å。
图3 高分辨TEM 图像(图片来源:百度网)
除了波长限制了透射电镜的分辨率外,透射电镜的像差,包括色差、球差、像散和畸变,也使得透射电镜的分辨率难以突破1 Å。20 世纪末,球差校正器研制成功,球差校正电子显微镜减小了非局域化效应的影响,进一步提高了透射电镜的分辨率,已经达到了亚埃量级。随着球差校正电子显微镜应用的普及,球差校正电子显微学在逐渐形成和发展。此外,近20 年来,随着电子显微术的不断发展,扫描透射电子显微镜术(STEM,其图像见图4)也成为了广泛应用的表征手段。相比于传统的高分辨相位衬度成像技术,扫描透射电镜具有分辨率高,对化学成分敏感,图像直观容易解释等优点。其中高分辨扫描透射电子显微镜可以直接获得原子分辨率的Z 衬度像,结合X 射线能谱和电子损失谱,还可以获得原子分辨率的元素分布图和单个原子列的能量损失谱,因此可以在一次实验中得到原子分辨率的结构、化学成分和电子结构等信息。
图4 富锂材料表面STEM 图像
透射电子显微镜的应用
透射电镜具有分辨率高、可与其他技术联用的优点,在材料学、物理、化学和生物学等领域有着广泛地应用。
材料的微观结构对材料的力学、光学、电学等物理化学性质起着决定性作用。透射电镜作为材料表征的重要手段,不仅可以用衍射模式来研究晶体的结构,还可以在成像模式下得到实空间的高分辨像,即对材料中的原子进行直接成像,直接观察材料的微观结构。电子显微技术对于新材料的发现也起到了巨大的推动作用,D.Shechtman 借助透射电镜发现了准晶,重新定义了晶体,丰富了材料学、晶体学、凝聚态物理学的内涵,D.Shechtman 也因此获得了2011年诺贝尔化学奖。
在物理学领域中,电子全息术能够同时提供电子波的振幅和相位信息,从而使这种先进的显微分析方法在磁场和电场分布等与相位密切相关的研究上得到广泛应用。目前,电子全息已经应用在测量半导体多层薄膜结构器件的电场分布、磁性材料内部的磁畴分布等方面。中国科学院物理研究所的张喆和朱涛等利用高分辨电子显微术和电子全息方法研究了Co 基磁性隧道结退火热处理前后的微观结构和相应势垒层结构的变化,研究结果表明,退火处理可以明显地改善势垒层和顶电极、底电极之间的界面质量,改进势垒本身的结构。
在化学领域,原位透射电镜因其超高的空间分辨率为原位观察气相、液相化学反应提供了一种重要的方法。利用原位透射电子显微镜进一步理解化学反应的机理和纳米材料的转变过程,以期望从化学反应的本质理解、调控和设计材料的合成。目前,原位电子显微技术已在材料合成、化学催化、能源应用和生命科学领域发挥着重要作用。透射电镜可以在极高的放大倍数下直接观察纳米颗粒的形貌和结构,是纳米材料最常用的表征手段之一。天津大学的杜希文和美国Brookhaven 国家实验室的Houlin L.xin 等用原位透射电镜观察了Co Ni双金属纳米粒子在氧化过程中形貌的变化,充分混合的Co、Ni 合金粒子经过氧化后,Co 和Ni 发生了空间上的部分分离,并在理论上对该现象进行了解释。
在生物学领域,X 射线晶体学技术和核磁共振常被用来研究生物大分子的结构,已经能够将蛋白质的位置精度确定到0.2 nm,但是其各有局限。X 射线晶体学技术基于蛋白质晶体,研究的常常是分子的基态结构,而对解析分子的激发态和过渡态无能为力。生物大分子在体内常常发生相互作用并形成复合物而发挥作用,这些复合物的结晶化非常困难。核磁共振虽然能够获得分子在溶液中的结构并且能够研究分子的动态变化,但主要适合用来研究分子量较小的生物大分子。近年来冷冻电镜技术突破了冷冻成像和图像处理瓶颈,发展成为当今结构生物学广泛应用的新兴技术。它可以以快速、高效、简易、高分辨率解析高度复杂的超大生物分子结构,在很大程度上超越了传统的X 射线晶体学技术。清华大学施一公研究组利用酵母细胞内源性蛋白提取获得了性质良好的样品,利用单颗粒冷冻电子显微镜技术,解析了酵母剪接体近原子水平的高分辨率三维结构,阐述了剪接体对信使RNA前体执行剪接的工作机理。
透射电子显微镜的发展方向
目前,透射电子显微术有几个重要的发展方向。第一,分辨率的提升。分辨率一直是透射电镜发展的目标和方向,发展新一代单色器和球差校正器,进一步提高透射电镜的能量分辨率和空间分辨率,尤其是对低压电镜。第二,发展原位透射电镜技术。原位透射电镜在材料合成、化学催化、生命科学和能源材料领域有着重要应用,可以通过在原子尺度下实时观察和控制气相反应和液相反应的进行,从而研究反应的本质机理等科学问题。第三,更加广泛的应用在生物大分子结构研究中。冷冻电镜在生物大分子结构研究中的广泛应用,将推动冷冻电镜技术的不断发展。冷冻电镜在生物学领域的应用越来越受到重视,成为连接生物大分子和细胞的纽带和桥梁。
从透射电子显微镜的诞生到今天的八十多年来,人们借助透射电镜解决了很多科学难题。透射电镜也在不断发展进步,功能日益全面,性能日益改善,虽然在发展过程中还存在一些问题和挑战,相信在众科研工作者的共同努力下,问题终将解决,透射电镜的各项技术也将进一步发展和突破。(责任编辑 王丽娜)
作者简介
:
谷林,中国科学院物理研究所,研究员。注 : 本文发表在2017年第13期《科技导报》,欢迎关注。
原位透射电子显微镜在能源材料和器件中的应用
▲第一作者:樊征;通讯作者:段镶锋,黄昱,黄建宇,时玉萌;
通讯单位:深圳大学,加州大学洛杉矶分校
论文DOI:10.1002/adma.201900608
全文速览
加州大学洛杉矶分校段镶锋团队与燕山大学黄建宇教授合作,在 Advanced Materials 上发表了关于能源材料和器件中原位透射电子显微镜表证技术的综述文章,详细归纳总结了原位透射电子显微镜在可充放电储能体系、燃料电池、钙钛矿太阳能电池等新能源领域中的表证技术,并对未来表证技术进行展望。
背景介绍
随着科学仪器技术的不断发展,先进的仪器设备开拓了我们探索未知领域的能力,大到宇宙小到单个原子,科学仪器的进步让科研人员实现了对物质内部相关反应的可视性和掌控性,从而进一步实现科学技术的突破。新能源技术的快速发展使科研人员聚焦于新型能量转换器件,如可充放电电池、燃料电池和太阳能电池等。在发展能量转换器件中,使用先进的科学仪器直观的检测器件内部的化学反应和能量转换等反应细节对于优化和设计器件是至关重要的。我们使用直观表证技术探测储能器件中的复杂化学反映、物相转化以及电流趋势,对于研究能源转换的机理和本质起到至关重要的作用。因此,研究者开发一系列原位电子显微学技术用于新型储能材料和器件。
在显微学技术中,原位扫描电子显微镜可以实时检测纳米材料的变化,但是对于研究原子尺度的结构动力学具有局限性。原子力显微镜和扫描隧道显微镜虽然具有接触式测量和原子级分辨率的优势,但是又仅局限于材料的表面检测。因此,在研究能源材料和器件时,原位透射电镜对于器件内部的化学反应和物相变化提供了直观的检测。这种新方法为基础电化学反应研究提供了关键的技术支撑,可以深入探索储能器件内部的电极材料结构转变、催化过程和衰减机制。先进的原位扫描电子显微镜技术为开拓高功率密度、高能量密度的稳定型新能源器件提供坚实的科研基础。
本篇综述我们将着重介绍原位透射电子显微镜在表征能源材料方面的应用和进展,首先简明回顾原位TEM表征技术在储能器件中的工作原理和发展进程,其次,我们将系统的总结原位TEM纳米电池技术在锂离子电池、燃料电池和钙钛矿太阳能电池中的应用。最后,我们将讨论环境扫描电镜(ETEM)和低温冷冻电镜(cryo-EM)在探测新型能源材料和器件的应用。
研究出发点
近期,加州大学洛杉矶分校段镶锋教授、黄煜教授和燕山大学黄建宇教授联合在 Advanced Materials 期刊上发表题为“In Situ Transmission Electron Microscopy for Energy Materials and Devices” 综述论文。该工作首先介绍了 TEM 实验杆从开放结构到封闭结构的演变过程,系统的归纳了原位透射电镜在多种能源材料和器件中的实时检测技术,讨论了环境扫描电镜和冷冻电子电镜在表征清洁能源材料的关键技术。综述真对能源材料和器件原位透射电镜表证进行了详细的讨论和分析对比。最后讨论了原位透射电镜新技术在储能器件中的新挑战。
图文解析
▲Figure 1. Development path of in situ TEM nanocells and their applications in the investigation of LIBs, chemical fuel cells, and PSCs. a) Open-cell setup for LIB investigation. b) Electrochemical liquid-cell setup for LIB investigation. c) Electrochemical liquid-cell setup for fuel cell investigation. d) Graphene liquid cell. e) Gas flow cell for PSC investigation.
最初的原位透射电镜表征技术主要研究单根纳米线电极在锂离子电池中的应用,针对锂离子电池技术存在的关键问题,如电极材料中锂离子的嵌入/脱出、SEI 膜的形成、电池的衰减和稳定性等,进行直观的探测和表征。如图1,随着仪器技术的不断改进与提高,原位透射电镜表征能源器件从初级的观察单根纳米线电极逐步演变成直观表征液体电化学储能体系、燃料电池的电化学性能、钙钛矿太阳能电池等。先进的仪器科学技术让我们更深入直观的掌握储能器件内部化学反映过程和能量转化过程,原位透射电镜的应用将协助我们突破工艺技术的限制,有效开发新型能源材料和器件。
1. 原位 TEM 在可充放电离子电池中的应用
▲Figure 2. In situ open-cell configurations used for studying the reaction mechanisms of LIB electrode materials. a,b) Intercalation reactions during the battery operation. a) The embrittlement of MWNT caused by Li-ion insertion/extraction. Scale bars: I) 100 nm, II) 25 nm, and III) 50 nm. Reproduced with permission. Copyright 2011, American Chemical Society. b) The movement of a phase transition region (PTR) in a LiMn2O4 nanowire cathode during the charging/discharging process. Reproduced with permission. Copyright 2015, American Chemical Society. c,d) Alloy reactions during the lithiation of silicon. c) Anisotropic swelling of a Si nanowire during lithiation. Scale bar: 100 nm. Reproduced with permission. Copyright 2011, American Chemical Society. d) Size-dependent fracture of a fully lithiated Si nanoparticle. Reproduced with permission. Copyright 2012, American Chemical Society. e,f) Conversion reactions on the electrode material. e) Conversion-reaction-based lithiation mechanism in an individual SnO2 nanowire. Reproduced with permission. Copyright 2013, American Chemical Society. f) Two-step intercalation conversion in the Fe3O4 lithiation process. Scale bar: 20 nm. Reproduced with permission. Copyright 2016, Nature Publishing Group.
基于电极材料化学性质的不同,可充放电离子电池的电极材料储能机理可以分为插层反应、合金化反应和转换反应。发展开放式和闭合式结构的原位 TEM 及其测试技术,可以直接观测储能器件充放电过程中电极材料的电化学反应过程及微观结构变化。
2. 原位 TEM 闭口结构在燃料电池中的应用
▲Figure 3. In situ closed cell for chemical fuel reaction investigation. a–c) Nanocatalyst growth trajectory observation. a) Direct observation of the growth of individual Pt nanoparticles. Scale bar: 5 nm. Reproduced with permission.Copyright 2009, The American Association for the Advancement of Science. b) The formation of a Pt3Fe nanorod from Pt3Fe nanoparticles. Scale bar: 2 nm. Reproduced with permission.Copyright 2012, The American Association for the Advancement of Science. c) Atomic-level observation of the facet growth of a Pt nanocube through a direct electron camera. Reproduced with permission.Copyright 2014, The American Association for the Advancement of Science. d,e) In situ observation of nanocatalyst degradation. d) Structural evolution of Pt–Fe nanocatalysts under an electrochemical reaction. Scale bar: 10 μm. Reproduced with permission. Copyright 2014, American Chemical Society. e) A specifically designed electrochemical TEM liquid cell using the actual ORR electrolyte (HClO4) for electrochemical characterization. Reproduced with permission. Copyright 2016, SAE International. f,g) In situ TEM closed cell plus UV characterization of the photocatalytic H2 evolution on anatase TiO2. f) Experimental setup of a fluidic TEM holder for in situ UV illumination. g) Photocatalysis evolution under UV exposure. f,g) Reproduced with permission.Copyright 2018, Nature Publishing Group.
对于燃料电池,原位 TEM 非常适合用于观察电池内部催化材料的老化过程,具有液体存放单元的原位 TEM 可以检测 ORR 等液相电化学反应,实时观测电催化剂的形貌和结构变化,从而让原位 TEM 成为原子尺度上的观察电化学反应的有力工具。
3. 原位 TEM 在钙钛矿太阳能电池中的应用
▲Figure 4. In situ TEM approaches in perovskite solar cell investigation. a,b) Perovskite aging studies using an MEMS-based TEM heating cell. These investigations revealed the influence of the fabrication route on the stability of the perovskite solar cell. a) A MAPbI3-based perovskite degradation study through HAADF imaging. Scale bars: 200 nm. Reproduced with permission.Copyright 2016, American Chemical Society. b) An in situ heating test of MAPbI3 perovskite. Scale bar: 500 nm. Reproduced with permission. Copyright 2016, Nature Publishing Group. c–e) In situ gas-cell TEM investigations on the thermal degradation mechanisms of MAPbI3. c) A schematic of the in situ gas cell. d) Layer-by-layer degradation of the MAPbI3 perovskite. e) Theoretical calculations of the MAPbI3 degradation process. c–e) Reproduced with permission. Copyright 2017, Cell Press.
钙钛矿太阳能电池因其所需的原材料储量丰富,制备工艺简单且可以采用低温、低成本的工艺实现高品质的薄膜而拥有诱人的前景。然而,基于钙钛矿的太阳能电池器件存在结构和组分的不稳定性等问题。因此可以通过原位 TEM 实时观测钙钛矿材料的形貌演变和生长过程,推进对钙钛矿材料的热降解机制深入理解。
4. 原位 TEM 在环境 TEM 中的应用
▲Figure 5. In situ TEM nanocell approaches in ETEM for alkali metal–oxygen battery studies. a–c) In situ TEM electrochemistry investigations on Li–O2 nanobatteries. Scale bar: 50 nm. Reproduced with permission.Copyright 2017, Nature Publishing Group. d,e) In situ TEM electrochemistry investigations on Na–O2 nanobatteries. Scale bar: 300 nm. Reproduced with permission. Copyright 2018, American Chemical Society.
在新能源技术中,金属空气电池由于其零污染和高理论容量而备受关注,而金属空气电池需要在纯氧气氛围中工作。ETEM 可以允许 TEM 样品室的气流达到 20mbar,这项技术可以用于金属空气电池储能器件的原位表证研究,实时揭示了充放电过程、物相转化以及电化学反应过程。
5. 低温冷冻电子电镜在纳米电池中的研究
▲Figure 6.Cryo-EM in Li dendrite and SEI layer characterization.
a) An approach for preserving and stabilizing Li metal. Reproduced with permission. [184] Copyright 2017, The American Association for the Advancement of Science. b) Li metal deposition and stripping morphology with a mosaic and multilayer SEI nanostructure. Reproduced with permission.[75] Copyright 2018, Cell Press. c) EELS analysis of the carbon-bonding environment near the dendrites. Scale bars: 300 nm. Reproduced with permission.
在金属锂电池储能系统中,由于金属锂在空气和电子辐射下都不稳定,传统的原位透射电镜技术很难表证其电极结构。为克服这一难题,通过生物冷冻电镜技术的启发,用液氮冷冻金属锂电极,使电极保持原有形态构造和化学信息,即使在电子束长时间辐射下,锂金属枝晶形貌仍然保持完整。
总结与展望
随着原位表证技术的快速发展,原位 TEM 表证技术已经突破多种技术难题,实现了电极材料的微纳结构与表界面的原位表征方法,结合原位 TEM 探测电极材料的物相变化、晶体结构,揭示储能材料界面反应的原位演化规律。对于此方向的技术创新,我们将有以下几方面提出展望:
1. 实现以充放电时间为基准的四维成像技术,开发具有耐久性的原位表证技术,实时探测能源器件的完整使用周期内物相转换过程。并与产业化能源器件相结合,更精准的检测储能器件中的电极结构变化、循环充放电引起的热失效机理、催化剂老化等问题。
2. 当石墨烯作为的液体存放单元时,可以有效忽略电子散射,从而实现原子级分辨率,但是由石墨烯薄膜进行封装的液体存放器需要依赖电子束作为启动电化学反应的热源,这种不能定量的热源不利于观察电极材料的结构变化。因此,我们希望通过 MEMS 技术制备电极原位加热系统,在石墨烯液体存放空间实现可控的电化学热引发装置。
3. 持续开发适用于检测能源器件的多功能 TEM 样品台,样品台的多功能化将开辟表征能源材料的新路径,可以应用于多种实验条件的样品信息采集,例如整合压电传感器和氮气于 TEM 样品台,用于表征锂金属电极和 SEI 的物相变化。Zeptools 目前正在研发原位液氮 TEM-STM 联合样品台,原位液相 TEM-STM 联合样品台,原位气相 TEM-STM 联合样品台等。
4. 光学技术的迅猛发展,也给仪器表征技术带来了新的研究方法。康奈尔大学的 Muller 团队开发了新型的分层衍射图像重建技术,并独立研发电子检测相机,在低工作电极(80kV)成像条件下,仍能保持分辨率 0.04 nm。这种突破性的进展为电极显微技术在能源材料和器件中的应用开启了新的篇章。
心得与体会
完成这篇综述,最大的体会是不同领域之间合作所迸发出的火花,以及感受到国际先进科学团队对于前沿仪器的推崇,并且不断运用于当前的热点问题。这样的实践非常有利于开展一系列重大原创性理论的研究,以取得国际领先的成果。在文章准备的过程中,深刻感受到了以段镶锋为代表的顶尖科学家们互相之间开诚布公,精诚合作的态度。相较于以往类似的综述,本文立足于实验仪器的发展这个最根本的研究基础,更全面地概括了透射电镜对于储能材料和器件发展的贡献,从而使得做出的展望更具有前瞻性和可靠性,也使得文章顺利被全球材料学科影响力居首的 Advanced Materials 期刊所收录。对于本文的顺利发表,非常感谢段镶锋教授,黄昱教授,黄建宇教授三位世界知名材料科学家的辛勤指导,以及段曦东教授,时玉萌教授的全力支持,并且感谢 梅琳博士,Daniel Baumann 博士,张立强博士和姚雨星同学的协助。
文章链接:
https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.201900608
(点击文末「阅读原文」直达原文阅读)
相关问答
透射电子显微镜 的 应用 是什么?_作业帮[最佳回答]透射电子显微镜在材料科学、生物学上应用较多.由于电子易散射或被物体吸收,故穿透力低,样品的密度、厚度等都会影响到最后的成像质量,必须制备更...
透射 电镜和扫描电镜的特点及 应用 (越全越好) – 960化工网问答扫描电子显微镜的设计思想和工作原理,早在1935年便已被提出来了。1942年,英国...近数十年来,扫描电镜已广泛地应用在生物学、医学、冶金学等学科的领域中,促进...
透射电子显微镜 的用途是什么?_天涯问答透射电子显微镜的用途是什么?_天涯问答
透射电子显微镜 的成像原理是什么_作业帮[最佳回答]透射电镜,通常采用热阴极电子枪来获得电子束作为照明源.热阴极发射的电子,在阳极加速电压的作用下,高速地穿过阳极孔,然后被聚光镜会聚成具有一定直...
透射电子显微镜 中间镜和投影镜中间镜和投影镜有什么作用? - ...透射电子显微镜中间镜和投影镜中间镜(intemediatelens)和投影镜(projectionlens)在物镜下方,依次设有中间镜和第1投影镜、第2投影镜,以共同完成对物...
从原理上讲,扫描电子显微镜与 透射电子显微镜 有什么区别和相似之处?扫描电镜主要是电子束照射到样品后的二次电子成像,透射电镜的明场像是透射电子成像。电子显微镜简称电镜,英文名ElectronMicroscope(简称EM)经过五十多年的...
...微镜.为什么有些地方说是扫描 电子显微镜 ?_作业帮[最佳回答]A.扫描电子显微镜是用量子隧道效应,可以得出导电物体表面形貌;透射显微镜的分辨率更高,但是只能得到二维图像,没有高度信息.其实出这个问题的人估计...
透射电子显微镜 选用直射电子形成的像称为_?TEM采用透射电子信号。透射电镜,即透射电子显微镜(TransmissionElectronMicroscope,TEM),是以波长极短的电子束作为照明源,用电磁透镜对透射电子聚焦成像的...
透射电子显微镜电子 枪是由什么组成的?透射电子显微镜电子枪(electronicgun)由阴极(cathode)、阳极(anode)和栅极(grid)组成电子枪由灯丝(h)、阴极(K)、栅极(G1)、前加速极(G2)、第一阳极(A1....
透射 电镜分辨率影响因素?造成显微镜光学像欠缺的因素主要在物镜组,有像差、衍射和光噪声等,它们是影响显微镜分辨率的主要因素,其次照明对显微镜的分辨率也有一定的影响。1.分辨率光...