粒子物理1|为什么摩擦会生电?人类至今都搞不懂
在上个世纪,人类的自然科学有了长足的发展,在前半叶占主导地位的是相对论和量子力学,这是两个基础理论,一个改变了人们对物质、能量、运动和时空关系的认识,一个改变人类对微观世界本质的认识。
到了后半叶,自然科学发展的势头并没有减弱,因为粒子物理学异军突起,让我们对这个世界的认识又提高了一个深度,粒子物理学说白了就是研究这个世界的组成成分,以及这些成分之间力的运作方式。
总结起来就是四个字:标准模型。它囊括了目前人类所知的所有基本粒子,以及它们之间相互作用的方式,可以说标准模型是人类目前最大的知识成就,也是人类400多年来物理知识的大成。
所以从这节课开始,我们就说亚原子粒子的发现,以及它们之间的相互作用,我们先说电子,因为它是第一个被人类识别出来的亚原子粒子。
我们现在知道,电子带负电,它所携带的电荷是1.6×10^-19库仑,那么库仑的定义是,1安培的电流在1秒种内,流过一根导线任一截面的电荷。
因此我们说的1安培就是每秒1库仑,根据电子所携带的电荷,我们就能知道1安培的电流其实就是每秒钟有6.25×10^18个电子流过。这个我们在后面说到电场力的时候会详细地说到。
那么在粒子物理学中,我们一般不太说电子具体的电荷是多少,而是会把电子所携带的电荷当作一个基本的电荷单位,就是1,我们会说一个物体携带了多少个电子电荷,这样使用起来非常方便。
我们现在还知道电子的质量是9.1094×10^-31千克,或者也可以说成是0.511Mev,之所以能这样说,是因为爱因斯坦的质能方程。
那么电子伏特是能量单位,它的定义是,一个电子在经过1伏特的电势差后所能获得的动能。1电子伏特等于1.602×10^-19焦耳,可以看出电子伏特是一个非常小的单位,是专门为表示粒子所携带的能量而创造的。
同时我们也可以看出来电子它的质量真的很小,是目前我们所知是除中微子以外,第二轻的基本粒子,是最轻的带电粒子。
但电子对我们来说是非常的重要,因为它质量很小,而且还非常稳定,且带有负电荷,因此电子是原子重要的组成部分,它在核外绕着带正电的原子核运行。
而其他所知的所有基本粒子没有一个可以胜任电子的工作,不是因为它们不稳定、就是因为它们不带电,例如缪子和中微子,这两个一个在2.19712×10^-6秒会发生衰变,另外一个为电中性,所以在原子中就不存在这些粒子。
因此我们在日常生活中看到的化学反应、生物学过程、电磁现象都跟电子有着直接的关系。这也是为什么电子是我们第一个发现的基本粒子。因为它做的事太多了,太重要了。
那么是谁发现了电子?英国物理学家J.J汤姆逊在卡文迪许实验室研究阴极射线的时候,测量了阴极射线粒子的荷质比,确定了原子中基本带电粒子,电子的存在。1897年,他把这些研究结果写成了三篇论文。
为了把这件事说得更详细一些,让大家都了解汤姆逊是怎样测量电子的荷质比的,我觉得在这之前还是要铺垫很多的基础知识。
这会涉及到电现象的发现、电场、电场力、磁场和磁场力,等等这些基础知识。好,那我们这节课的后半部分就说,人类是怎样发现电现象,以及对电现象研究的历史。
人类发现电现象其实非常的偶然,并不是我们想象地看到了雷电,就认为大自然有电现象,而是古时候的富人们一手拿着毛皮、一手拿着琥珀,在他们擦拭完琥珀以后,就发现被毛皮摩擦过的琥珀可以吸引细小的物体,比如一些毛发、碎屑之类的东西。
这个现在最早的记录出现在公元前4世纪柏拉图的对话集《蒂迈欧篇》当中,里面就描述了琥珀具有吸引力的现象。
到了16-17世纪,一位叫威廉·吉尔伯特的英国医生就发现,这种吸引力的现象其实非常的普遍,它也可以发生在像玻璃、石蜡、钻石、煤玉等等这些物质的身上,吉尔伯特也是第一个仿照琥珀的希腊字,创造了电的这个词(electricity)。
在这么多的物体上都发现了电吸引的现象,这就说明电这种奇怪的东西,并不是单个物体所特有的属性,而是当两个物体摩擦的时候产生的一种流质。
1729年,英国人斯蒂芬·格雷就发现把摩擦过的玻璃棒与其他物体接触以后,可以让这些物体具有吸引其他物体的能力,这说明电可以传递给别的东西。从而就验证了上面的说法,电是一种流质,不是某一个物体特有的属性。
随后人们就发现了电不仅有吸引力,还有排斥力,这一下让电的现象变得复杂了,发现这个现象的人叫弗朗西斯·豪克斯比,他说,用摩擦后的玻璃棒接触一些铜屑以后,这些铜屑之间竟然表现出了排斥力,和玻璃棒之间也有了排斥力。
到了1733年,这个现象就变得更加复杂了,因为法国科学家迪费就发现,和玻璃棒接触过的铜屑虽然互相排斥,但是它们却和与带电树脂接触过的铜屑,表现出了吸引力。
所以迪费得出结论,有两种完全不同的电,一种叫玻璃电,一种叫树脂电。玻璃电和玻璃电、树脂电和树脂电互相排斥,而玻璃电和树脂电互相吸引。
这样的结论就可以解释以上的现象了,当玻璃与丝绸摩擦以后,玻璃上会带玻璃电,丝绸上会带树脂电,当像琥珀这类树脂与毛皮摩擦以后,琥珀就会带树脂电,毛皮就会带玻璃电。
这种说法就是电的双流体理论,在很长一段时间内他符合我们的实验的观察,但是到了18世纪中期,人们就提出了一个全新的理论,叫单流体理论,相比于双流体它更加的简洁。
提出并发扬这个理论的人我们非常的熟悉,他是美国费城的著名学者:本杰明·富兰克林。他说,每一个物体本身都可以容纳一定的电,在没有摩擦的时候,这种电是满的,不缺也不多,所以物体不带电。
当摩擦以后,比如玻璃棒与丝绸摩擦,在这个过程中有一些电就会从丝绸上跑到玻璃上,这时玻璃上就会携带更多的电,叫盈余电,这种电跟费迪说的玻璃电是一样的。
但这时由于一部分电跑到了玻璃上,那么在丝绸上就会出现一些缺额,这些缺额就是迪费所说的树脂电。
同时富兰克林还发明了一些名词到今天仍在使用,比如说他把缺额,也就是树脂电叫负电,把盈余电,也就是玻璃电叫正电。
同时他也创造了电荷这个词语,用来描述物体上携带电的数量,提出了“电荷守恒”这个非常超前的基本假说,说的是,电荷不会被创造,只会从一个物体的身上上转移到另外一个物体的身上。
富兰克林的单流体理论也可以解释电现象的排斥和吸引,他假定有盈余电的物体相互排斥,但它们却可以吸引有电缺额的物体,而有电缺额的两个物体之间却会表现出互相排斥的现象。
那么到底是单流体理论还是双流体理论,这个问题直到电子发现以后才没有了争论,以我们现在掌握的知识来看,其实两种理论都是正确的。
你看,是这样的,我们可以认为电只有一种就是电子携带的负电荷,当玻璃棒与丝绸摩擦的时候,是玻璃棒上的电子跑到了丝绸的上面,玻璃棒有了缺额带了正电,丝绸有了盈余带了负电。
所以说单流体没有问题,但可以看出富兰克林当年把一件事给搞差了,他把缺额,也就是树脂电叫负电,把盈余,也就是玻璃电叫正电。
后来物理学家就沿用了一部分富兰克林的说法,把玻璃棒上的电荷就叫正电荷,把丝绸上的电荷就叫负电荷。
所以电子就带了负电,原子核就带了正电,正负完全是人为规定的。没有什么特殊的原因。那为什么说双流体理论也是正确的?
因为确实有正电荷的存在,确实有两种电荷,比如说在盐的溶液当中,我们就可以得到带负电的粒子流,和带正电的粒子流,这就是两种电荷的流体。
而且从更高的层面上说,带负电的电子还有一个反物质版本叫正电子,他跟电子的质量和自旋是一样的,但是电荷相反,所以双流体理论也是正确的。不过在一般情况下,单流体理论使用起来更加的方便。
可以看出人类对电的认识是从摩擦生电开始的,但是为什么摩擦会生电?为什么用丝绸摩擦玻璃棒,电子会从玻璃棒上跑到丝绸的上面?为什么毛皮上的电子会跑到琥珀的上面?
说起来也奇怪,看似简单常见的问题,其实我们并不知道其中的原因,而且摩擦生电也是人类第一个认识到的电现象。对此,我们没有一个详细完整的解释。
不过通过大量的研究,我们总结出了摩擦生电物质的顺序表,前面的物质倾向于失去电子,而后面的物质倾向于获得电子,也就是说,每种材料它们对电子的渴望程度不同,当两种材料相遇,一种容易失去电子,一种渴望获得电子,它们只要一接触就会传递电子。
其实并不是摩擦本身的原因,就算不摩擦也可以生电,比如说,一张塑料纸,你没有摩擦它,它都会粘在你的手上。
只不过摩擦是一个比较充分的、长时间的接触过程,所以才让我们产生了一个误区,认为是摩擦生电了,其实是接触就可以生电。
所以问题就变成了为什么不同材料的物体,它们对电子的渴望程度不同?这就涉及到了复杂物体表面的物理学问题了,这个分支学科的发展并不成熟。
而且有一点特别的重要,每一种材料对电子的渴望程度并不是固定的,随着温度的变化、空气湿度的变化都会影响它们对电子的态度,因此以上的这个摩擦生电顺序表中物质的相对顺序并不是固定了。所以加上影响因素比较多,摩擦生电的过程非常复杂,现在还没有一个详细合理的解释。
好了,今天的内容就到这里,下节课我们说人们对阴极射线的研究。
塞曼效应的原理、简介、理论发展、特性、分类以及实际应用用途
塞曼效应是指原子在外磁场中发光谱线发生分裂且偏振的现象称为塞曼效应;历史上首先观测到并给予理论解释的是谱线一分为三的现象,后来又发现了较三分裂现象更为复杂的难以解释的情况,因此称前者为正常或简单塞曼效应,后者为反常或复杂塞曼效应。
一、原理简介
荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞曼效应。
塞曼效应是法拉第磁效致旋光效应之后发现的又一个磁光效应。这个现象的发现是对光的电磁理论的有力支持,证实了原子具有磁矩和空间取向量子化,使人们对物质光谱、原子、分子有更多了解,特别是由于及时得到洛仑兹的理论解释,更受到人们的重视,被誉为继X射线之后物理学最重要的发现之一。
1902年,塞曼与洛仑兹因这一发现共同获得了诺贝尔物理学奖(以表彰他们研究磁场对光的效应所作的特殊贡献)。
塞曼效应,英文:Zeeman effect,是1896年由荷兰物理学家塞曼发现的.他发现,原子光谱线在外磁场发生了分裂。随后洛仑兹在理论上解释了谱线分裂成3条的原因。这种现象称为“塞曼效应”。进一步的研究发现,
很多原子的光谱在磁场中的分裂情况非常复杂,称为反常塞曼效应。完整解释塞曼效应需要用到量子力学,电子的轨道磁矩和自旋磁矩耦合成总磁矩,并且空间取向是量子化的,磁场作用下的附加能量不同,引起能级分裂。在外磁场中,总自旋为零的原子表现出正常塞曼效应,总自旋不为零的原子表现出反常塞曼效应。塞曼效应是继1845年法拉第效应和1875年克尔效应之后发现的第三个磁场对光有影响的实例。塞曼效应证实了原子磁矩的空间量子化,为研究原子结构提供了重要途径,被认为是19世纪末20世纪初物理学最重要的发现之一。利用塞曼效应可以测量电子的荷质比。在天体物理中,塞曼效应可以用来测量天体的磁场。
二、理论发展
1896年,荷兰物理学家塞曼使用半径10英尺的凹形罗兰光栅观察磁场中的钠火焰的光谱,他发现钠的D谱线似乎出现了加宽的现象。这种加宽现象实际是谱线发生了分裂。随后不久,塞曼的老师、荷兰物理学家洛仑兹应用经典电磁理论对这种现象进行了解释。他认为,由于电子存在轨道磁矩,并且磁矩方向在空间的取向是量子化的,因此在磁场作用下能级发生分裂,谱线分裂成间隔相等的3条谱线。塞曼和洛仑兹因为这一发现共同获得了1902年的诺贝尔物理学奖。
1897年12月,普雷斯顿(T.supeston)报告称,在很多实验中观察到光谱线有时并非分裂成3条,间隔也不尽相同,人们把这种现象叫做为反常塞曼效应,将塞曼原来发现的现象叫做正常塞曼效应。反常塞曼效应的机制在其后二十余年时间里一直没能得到很好的解释,困扰了一大批物理学家。1925年,两名荷兰学生乌仑贝克(G.E.Uhlenbeck,1900--1974)和古兹米特(S.A.Goudsmit,1902--1978)提出了电子自旋假设,很好地解释了反常塞曼效应。
应用正常塞曼效应测量谱线分裂的频率间隔可以测出电子的荷质比。由此计算得到的荷质比数值与约瑟夫·汤姆生在阴极射线偏转实验中测得的电子荷质比数量级是相同的,二者互相印证,进一步证实了电子的存在。
塞曼效应也可以用来测量天体的磁场。1908年美国天文学家海尔等人在威尔逊山天文台利用塞曼效应,首次测量到了太阳黑子的磁场。
1912年,帕邢和拜克(E.E.A.Back)发现在极强磁场中,反常塞曼效应又表现为三重分裂,叫做帕邢-拜克效应。这些现象都无法从理论上进行解释,此后二十多年一直是物理学界的一件疑案。正如不相容原理的发现者泡利后来回忆的那样:“这不正常的分裂,一方面有漂亮而简单的规律,显得富有成果;另一方面又是那样难于理解,使我感觉简直无从下手。”
1921年,德国杜宾根大学教授朗德(Landé)发表题为:《论反常塞曼效应》的论文,他引进一因子g代表原子能级在磁场作用下的能量改变比值,这一因子只与能级的量子数有关。
1925年,乌伦贝克与哥德斯密特“为了解释塞曼效应和复杂谱线”提出了电子自旋的概念。1926年,海森伯和约旦引进自旋S,从量子力学对反常塞曼效应作出了正确的计算。由此可见,塞曼效应的研究推动了量子理论的发展,在物理学发展史中占有重要地位。
三、偏振特性
对于Δm=+1,原子在磁场方向的角动量减少了一个\hbar,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量\hbar,方向和电矢量旋转方向构成右手螺旋,称之为σ+偏振,为右旋偏振光。反之,对于Δm=-1,原子在磁场方向的角动量增加一个\hbar,光子具有与磁场方向相反角动量\hbar,方向和电矢量旋转方向构成左手螺旋,称之为σ-偏振,为左旋偏振光。对于Δm=0,原子在磁场方向角动量不变,称之为π偏振。如果沿磁场方向观察,只能观察到σ+和σ-谱线左旋偏振光和右旋偏振光,观察不到π偏振谱线。如果在垂直于磁场方向观察,能够观察到原谱线分裂成三条:中间一条是π谱线,为线偏振光,偏振方向和磁场方向平行,σ+与σ-线分居两侧,同样是线偏振光,偏振方向和磁场方向垂直。
1、原理
塞曼效应证实了原子具有磁距和空间取向量子化的现象,至今塞曼效应仍是研究能级结构的重要方法之一。正常塞曼效应可用经典理论给予很好的解释;而反常塞曼效应却不能用经典理论解释,只有用量子理论才能得到满意的解释。
塞曼效应是物理学史上一个著名的实验。荷兰物理学家塞曼在1896年发现:把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱由一条谱线分裂成几条偏振化谱线的现象称为塞曼效应。若一条谱线分裂成三条、裂距按波数计算正好等于一个洛仑兹单位(L0=eB/4πmc)的现象称为正常塞曼效应;而分裂成更多条且裂距大于或小于一个洛仑兹单位的现象称为反常塞曼效应。
塞曼效应的产生是原子磁矩和外加磁场作用的结果。根据原子理论,原子中的电子既作轨道运动又作自旋运动。原子的总轨道磁矩μL与总轨道角动量pL的关系为:
原子的总自旋磁矩μS与总自旋角动量PS的关系为:
其中:m为电子质量,L为轨道角动量量子数,S为自旋量子数,\hbar为普朗克常数除以2π,即\hbar=h/(2π)(\hbar写法是在小写的h上半部分打一横杠)。
原子的轨道角动量和自旋角动量合成为原子的总角动量pJ,原子的轨道磁矩和自旋磁矩合成为原子的总磁矩μ(见图1)。由于μS/pS的值不同于μL/pL值,总磁矩矢量μ不在总角动量pJ的延长线上,而是绕pJ进动。由于总磁矩在垂直于pJ方向的分量μ┴与磁场的作用对时间的平均效果为零,所以只有平行于pJ的分量μJ是有效的。μJ称为原子的有效磁矩,大小由下式确定:
其中,J为总角动量量子数,g为朗德因子。对于LS耦合,存在
当原子处在外磁场中的时候,在力矩N=μ×B的作用下,原子总角动量pJ和磁矩μJ绕磁矩方向进动(见图2)。原子在磁场中的附加能量ΔE为:
其中,β为pJ与B的夹角。角动量在磁场中取向是量子化的,即:
其中,M为磁量子数。因此,
图1 原子磁矩与角动量的矢量模型 图2 μJ和pJ的进动
可见,附加能量不仅与外磁场B有关系,还与朗德因子g有关。磁量子数M共有2J+1个值,因此原子在外磁场中,原来的一个能级将分裂成2J+1个子能级。
未加磁场时,能级E2和E1之间的跃迁产生的光谱线频率ν为:
(1)外加磁场时,分裂后的谱线频率ν'为:
(2)分裂后的谱线与原来谱线的频率差Δν'为:
(3)定义为洛仑兹单位。
用波数间距Δγ表示为:
(4)能级之间的跃迁必须满足选择定则,磁量子数M的选择定则为ΔM=M2-M1=0, ±1;而且当J2=J1时,M2=0 à M1=0的跃迁除外。
当ΔM=0时,产生π线,沿垂直于磁场方向观察时,π线为光振动方向平行于磁场的线偏振光,沿平行于磁场方向观察时,光强度为零,观察不到(见图3)。
当ΔM=±1时,产生σ线,迎着磁场方向观察时,σ线为圆偏振光,ΔM=+1时为左旋圆偏振光,ΔM=-1时为右旋圆偏振光。沿垂直于磁场方向观察时,σ线为线偏振光,其电矢量与磁场垂直。
π线和σ线
只有自旋是单态,即总自旋为0谱线才表现出正常塞曼效应。非单态谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是三条,间隔也不一定为一个洛仑兹单位。
例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞曼效应。589.6nm的谱线为2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强的时候,在外磁场作用之下,2S1/2态能级分裂成2个子能级,2P1/2态也分裂成2个子能级,但由于两个态朗德因子不同,谱线分裂成4条,中间两条为π线,外侧两条分别是σ+线与σ-线。589.0nm的谱线为2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成4个子能级,因此589.6nm的谱线分裂成六条。中间两条π线,外侧两边各2条σ线。
2、理论解释
不加外磁场时,原子在
两个能级E1和E2(E12)之间跃迁的能量差为
:\Delta E = h\nu = E_ - E_
原子核的磁矩比电子磁矩小大约三个数量级。如果只考虑电子的磁矩对原子总磁矩的贡献,那么磁场引起的附加能量为
:\Delta U = -\mathbf{\mu}\cdot\mathbf = -\mu_B = m_g_\mu_B
这里将磁感应强度B的方向取为z轴方向,μZ是磁矩在z方向上的投影。mJ是电子总角动量J在z方向投影的量子数,可以取-J,-J+1,…J-1,J共2J+1个值,gJ是电子总角动量的朗德因子,μB是玻尔磁子。
这样,原子的每一个能级分裂成若干分立的能级,两个能级之间跃迁的能量差为
::\Delta E' = h\nu ' = E'_ - E'_ = E_ - E_ + (m_g_ - m_g_)\mu_B
对于自旋为零的体系有g_=g_=1。由于跃迁的选择定则\Delta m_ = m_ - m_ = 0,\pm 1,频率ν只有三个数值
因此一条频率为ν的谱线在外磁场中分裂成三条谱线,相互之间频率间隔相等,为\frac{\mu_B}。洛仑兹应用经典电磁理论解释了正常塞曼效应,计算出了这个频率间隔。通常把这个能量差的波数间隔\Delta(\frac{\lambda})=\frac{\mu_B}=\frac{e\hbar B}=\frac{4\pi m_c}\approx 46.7B m^T^称为洛仑兹单位,符号\hat。
镉的643.847nm(1D2态向1P1态的跃迁)谱线在磁场不太强时就是表现出正常塞曼效应。这两个态的g都等于1,在外磁场中,1D2分裂成5个子能级,1P1分裂成3个子能级,由于选择定则,这些子能级之间有9种可能的跃迁,有3种可能的能量差值,所以谱线分裂成3条。
3、实验现象
对于Δm=+1,原子在磁场方向的角动量减少了一个,由于原子和光子的角动量之和守恒,光子具有与磁场方向相同的角动量,方向与电矢量旋转方向构成右手螺旋,称为σ+偏振,是左旋偏振光。反之,对于Δm=-1,原子在磁场方向的角动量增加了一个,光子具有与磁场方向相反的角动量,方向与电矢量旋转方向构成左手螺旋,称为σ-偏振,是右旋偏振光。对于Δm=0,原子在磁场方向的角动量不变,称为π偏振。如果沿磁场方向观察,只能观察到σ+和σ-谱线的左旋偏振光和右旋偏振光,观察不到π偏振的谱线。如果在垂直于磁场方向观察,能够观察到原谱线分裂成3条:中间一条是π谱线,是线偏振光,偏振方向与磁场方向平行,σ+和σ-线分居两侧,同样是线偏振光,偏振方向与磁场方向垂直。
4、反常效应
只有自旋为单态,即总自旋为0的谱线才表现出正常塞曼效应。非单态的谱线在磁场中表现出反常塞曼效应,谱线分裂条数不一定是3条,间隔也不一定是一个洛仑兹单位。
例如钠原子的589.6nm和589.0nm的谱线,在外磁场中的分裂就是反常塞
曼效应。589.6nm的谱线是2P1/2态向2S1/2态跃迁产生的谱线。当外磁场不太强时,在外磁场作用下,2S1/2态能级分裂成两个子能级,2P1/2态也分裂成两个子能级,但由于两个态的朗德因子不同,谱线分裂成4条,中间两条是π线,外侧两条分别是σ+线和σ-线。589.0nm的谱线是2P3/2态向2S1/2态跃迁产生的,2P3/2态能级在外磁场不太强时分裂成四个子能级,因此589.6nm的谱线分裂成6条。中间两条π线,外侧两边各两条σ线。
5、逆效应
实验中不仅可以观察到光谱发射线的塞曼效应,吸收线也会发生塞曼效应,这被称为逆塞曼效应。
6、破坏
只有当外磁场的强度比较弱,不足以破坏自旋-轨道耦合时才会出现反常塞曼效应,这时自旋角动量和轨道角动量分别围绕总角动量作快速进动,总角动量绕外磁场作慢速进动。当磁场很强时,自旋角动量和轨道角动量不再合成总角动量,而是分别围绕外磁场进动。这时反常塞曼效应被帕邢-巴克效应所取代,其效果是恢复到正常塞曼效应,即谱线分裂成3条,相互之间间隔一个洛伦兹单位。这里磁场的“强”与“弱”是相对的,例如3T的磁场对于钠589.6nm和589.0nm的双线是弱磁场,不会引起帕邢-巴克效应,但对于锂的670.785nm和670.800nm的双线是强磁场,足够观察到帕邢-巴克效应
四、实际用途
1. 由塞曼效应实验结果去确定原子的总角动量量子数J值和朗德因子g值,进而去确定原子总轨道角动量量子数L和总自旋量子数S的数值。
2. 由物质的塞曼效应分析物质的元素组成。
(此处已添加书籍卡片,请到今日头条客户端查看)相关问答
【 电子比荷 用来做什么的?为什么要定义他,他用来做什么?】作业帮[最佳回答]额,电子比荷=q/m有这么一个公式m*v^2/q=FF为向心力所以这里知道电子比荷可以再螺旋加速器中得出速度而电子的速度在物理学上可以做很多研究比...
电子 的 比荷 是什么?_作业帮[最佳回答]电子的电荷量e与电子的质量m叫做电子的比荷,他也是一个重要的物理量.电子的比荷等于e/m=1.76×10的11次方电子的电荷量e与电子的质量m叫做电子的比...
电子 的 荷质比 公式及其意义?带电粒子的电量与其质量之比,是基本粒子的重要数据之一。测定荷质比是研究带电粒子和物质结构的重要方法。英国人汤姆逊首先利用磁场测出电子的荷质比。1897...
电子 的 比荷 是什么?电子荷质比electron?charge-massratioof电子电量e和电子静质量m的比值e/m。电子的基本常数之一。又称电子比荷。1897年J.J.汤姆孙通过电磁偏转的方法测量...
【 电子 的 荷质比 (q/m)是多少?】作业帮[最佳回答]电子电荷为q=1.60×10^(-19)库伦,质量m=9.1×10^(-31)kg质荷比q/m=1.76×10^11C/kg
电子荷质比 的测定方法有哪些?要具体的谁... _作业帮[最佳回答]通过速度选择器适当调节EBV=E/B(1)电偏转:垂直平行板射入则偏距Y=1/2×mU/qB×L²//V²∴q/m=2mdyE²/UL²B²-------这些量都是可测量的...
电子比荷 的测定实验结论与讨论?1)电子通过正交的电磁场,当电子直线射出时,F洛=F电,即Bev=eE得电子的运动速度v=E/B2)在其它条件不变的情况下,撤去电场,只保留磁场,再让电子射入磁...1)电子...
以求得 电子 的 荷质比 ,实验装置如图所示。(1)他们】作业帮[最佳回答](1)B.使电子刚好落在正极板的近荧光屏端边缘,利用已知量表达q/mC.垂直电场方向向外(垂直纸面向外)(2)说法不正确,电子的荷质比是电子的固有参数(1...
电子比荷 测定误差计算?电子比荷的测定误差可以通过以下公式进行计算:误差=绝对误差/真值其中,绝对误差是测量值与真值之间的差值,真值可以是已知的准确值或经过更精确测量的值。...
比荷 的数值是一定的吗?带电体的电荷量和质量的比值,叫做比荷,又称荷质比。电子电量e和电子静质量m的比值(e/m)是电子的基本常数之一,又称电子比荷。1897年J.J.汤姆孙通过电磁...带...