现代汽车电子技术应用论文 「论文集锦」5G与车联网——《电子技术应用》优秀论文集锦

小编 2024-10-06 论坛 23 0

「论文集锦」5G与车联网——《电子技术应用》优秀论文集锦

5G赋能企业级客户和垂直行业的智慧化发展,为运营商和产业合作伙伴带来新的商业模式,开启一个全连接的新时代。车联网作为5G的重点业务之一,正在逐步构建以人、车、路协同的辅助驾驶、自动驾驶为核心的智能交通系统,新场景、新需求的引入对数据通信与计算提出了更高的要求,也推进车联网从支持车载信息服务(Telematics)向支持车联一切(V2X)服务的下一代车联网发展。为了促进5G通信的技术交流,推动我国5G通信技术的发展,《电子技术应用》杂志2019年第8期和第9期推出了“5G与车联网”主题专栏,论文内容涵盖5G车联网关键技术与发展现状、5G车联网标准进展、5G车路协同解决方案和5G车联网应用方案与实践案例等,期待为5G时代的车联网技术和应用部署提供有益的借鉴。

特约主编: 朱雪田 ,北京邮电大学工学博士,教授级高级工程师,中关村国家自主创新示范区高端领军人才,北京邮电大学通信与信息专业工程硕士导师,现就职于中国电信智能网络与终端研究院。长期从事4G/5G移动通信和互联网技术创新与研发工作,作为项目组长先后负责多个4G/5G领域的移动通信国家重大项目,发表学术论文超过50篇,发明专利100余篇,个人专著3本。

小编整理了《电子技术应用》2019年5G与车联网专栏刊登的优秀论文,欢迎相关领域研究者参考借鉴!

关键技术及研究进展

5G车联网技术与标准进展

摘要: 由于时延和可靠性的短板,基于LTE V2X的蜂窝车联网解决方案只适用于辅助驾驶和初级自动驾驶场景,必须通过更新技术满足未来高级自动驾驶的需求,基于5G的蜂窝车联网NR V2X应运而生。结合3GPP 5G NR V2X的标准制定过程,在分析车联网面向高级自动驾驶应用场景的基础上,重点分析了5G NR V2X关键技术要求和解决方案,并对当前3GPP标准化进展进行了介绍。

全文链接:

http://www.chinaaet.com/article/3000106989

中文引用格式: 朱雪田. 5G车联网技术与标准进展[J].电子技术应用,2019,45(8):1-4,9.

英文引用格式: Zhu Xuetian. 5G V2X network technology and standards development[J]. Application of Electronic Technique,2019,45(8):1-4,9.

面向 LTE-V 调度方法研究

摘要: 智能出行推进车联网从支持车载信息服务向支持V2X服务的下一代车联网发展,为了满足车联网发展需求,3GPP标准针对LTE-V制定了PC5接口和Uu两种通信方式。结合LTE-V业务特点,介绍了Mode3、Mode4、SPS增强调度算法及各算法优缺点,为车联网车车、车路、车人之间低时延、高可靠性的通信需求奠定基础。

全文链接:

http://www.chinaaet.com/article/3000108280

中文引用格式: 李艳芬,朱雪田. 面向LTE-V调度方法研究[J].电子技术应用,2019,45(9):8-12.

英文引用格式: Li Yanfen,Zhu Xuetian. Research on LTE-V scheduling method[J]. Application of Electronic Technique,2019,45(9):8-12.

浅析未来车联网中运营商通道能力的挑战与创新

摘要: 诠释电信运营商在传统车联网中提供的通道服务能力的演进路线。结合未来车联网业务形态发展趋势,分析传统车联网通道服务面临的增长瓶颈和能力挑战,解析引入边缘计算、网络切片等5G关键技术为车联网通道带来的服务能力拓展,并探讨了运营商面向未来车联网的通道服务模式和商业模式创新。

全文链接:

http://www.chinaaet.com/article/3000108217

中文引用格式: 陈荆花,包枫叶,蒋寅. 浅析未来车联网中运营商通道能力的挑战与创新[J].电子技术应用,2019,45(9):1-4.

英文引用格式: Chen Jinghua,Bao Fengye,Jiang Yin. Study on the challenge and innovation of the Internet of Vehicles enabled by operators[J]. Application of Electronic Technique,2019,45(9):1-4.

6 GHz频段V2X车联网系统与卫星固定业务兼容性研究

摘要: 现阶段,我国正处于制造业转型升级、新兴科技产业创新发展的重要时期,作为新兴智能产业的车联网正日渐受到国家重视。以第五代移动通信(5G)系统为基础,采用国际电信联盟(ITU)相关建议书和报告书提供的传播模型,通过确定性计算,开展了对6 GHz频段下V2X车联网系统与卫星固定业务的兼容性研究。结果表明,6 GHz频段下V2X车联网系统与卫星固定业务具备共存的可能性。

全文链接:

http://www.chinaaet.com/article/3000108218

中文引用格式: 张少伟. 6 GHz频段V2X车联网系统与卫星固定业务兼容性研究[J].电子技术应用,2019,45(9):5-7,12.

英文引用格式: Zhang Shaowei. Research on the compatibility between V2X Internet of Vehicles system and FSS at 6 GHz frequency band[J]. Application of Electronic Technique,2019,45(9):5-7,12.

设计与应用

5G中Multi-TRP based URLLC传输方案设计

摘要: 超高可靠低时延通信(URLLC)作为5G的三大应用场景之一,受到了越来越广泛的关注。车联网是URLLC的主要应用之一,对信息传输的可靠性有很高的需求。为了增强传输的鲁棒性和可靠性,从空分、频分和时分的角度分别介绍了多种Multi-TRP based URLLC技术方案,对比分析了其优缺点。此外,设计了一种新的动态切换传输方式的信令指示方案,并对多种方案进行了性能仿真评估。仿真结果表明,动态切换的方式能提供显著的性能增益。

全文链接:

http://www.chinaaet.com/article/3000106995

中文引用格式: 王瑜新,邱刚,鲁照华,等. 5G中Multi-TRP based URLLC传输方案设计[J].电子技术应用,2019,45(8):10-13.

英文引用格式: Wang Yuxin,Qiu Gang,Lu Zhaohua,et al. The design of Multi-TRP based URLLC transmission scheme in 5G[J]. Application of Electronic Technique,2019,45(8):10-13.

基于5G车联网的绿波通行系统研究

摘要: 结合MEC与C-V2X融合技术,研究了一种基于5G车联网的绿波通行系统,并且在绿波通行模型、MEC应用和协同控制管理等方面做了相关研究。该系统实现了更低时延的实时车路协同以及多个路口红绿灯信息协同感知,进而实现连续性绿波优先通行,减少路口交通拥堵,并提升运输效率。

全文链接:

http://www.chinaaet.com/article/3000106990

中文引用格式: 田亮,张岩,徐黎. 基于5G车联网的绿波通行系统研究[J].电子技术应用,2019,45(8):5-9.

英文引用格式: Tian Liang,Zhang Yan,Xu Li. Research on green wave transit system based on 5G-V2X[J]. Application of Electronic Technique,2019,45(8):5-9.

车路协同的云管边端架构及服务研究

摘要: 对智能交通业务的发展趋势、车路协同技术及系统要求以及国内外发展现状进行了介绍;同时重点阐述了智能网联交通体系之车路协同云管边端架构方案,介绍了中心云、交通专网/电信网络、边缘云、车载/路侧终端协同的“云-管-边-端”统一架构,同时提出了基于云管边端架构的车路协同多源数据融合信息服务能力开放框架,并对其具体功能要求、API调用方式进行了详细论述。

全文链接:

http://www.chinaaet.com/article/3000106996

中文引用格式: 熊小敏,杨鑫,刘兆璘,等. 车路协同的云管边端架构及服务研究[J].电子技术应用,2019,45(8):14-18,31.

英文引用格式: Xiong Xiaomin,Yang Xin,Liu Zhaolin,et al. Research on cloud-network-edge-terminal architecture and service of vehicle-road collaboration[J]. Application of Electronic Technique,2019,45(8):14-18,31.

原创声明:此内容为AET网站原创,未经授权禁止转载。

基于电子电器架构的整车OTA设计

来源:重庆汽车工程学会 作者:刘俊、马云林、刘平

摘 要

(Over-the-Air)是一种无线升级技术,为软件提供了持续迭代更新的能力,已逐渐成为智能网联汽车的标配。整车OTA受限于电子电气架构、升级时间长、控制器多难以控制等限制导致发展进度缓慢,为提高整车OTA的稳定性并缩短升级时间,本文提出一种基于电子电器架构的整车OTA设计方案,实现了对升级对象的统一管理、对升级过程的集中控制,并以此提出了整车OTA的平台化架构方案。本设计方案可应用于其他车型,解决了整车OTA涉及控制器多、升级过程不可控、升级时间长和稳定性差等问题,形成了一套从云端到车端完整的持续迭代更新能力和智能网联汽车价值提升的新动力。

引 言

OTA(Over-the-Air)即空中下载技术,是通过移动通信的接口实现对软件进行远程管理。OTA是汽车软件升级的通道,其价值是将新软件远程刷写到汽车中。软件定义汽车逐渐成为业内共识,汽车软件存在两个趋势:第一、整车厂交付的汽车将不再是一个功能固化的产品,而是一个持续更新的智能设备,在整个生命周期内,需要持续支持软件迭代升级;第二、随着软件量的增加,软件bug将成为潜在风险,OTA可以有效解决软件故障,通过软件升级降低开发周期短带来的软件风险问题,完成软件漏洞的修复,减少软件问题导致的召回。OTA远程升级技术已逐渐成为智能网联汽车的基础功能,通过持续迭代的更新软件,不断提升汽车的潜在价值,从而带动智能网联汽车行业全新的商业模式[1]。

1. 需求分析

汽车整车OTA受限于电子电气架构,存在很多困难。随着汽车电子化技术的提高,电子控制单元ECU占领了诸如动力、底盘、车身、座舱以及自动驾驶等领域,ECU的数量多达几十甚至上百个。这些ECU是由不同的供应商提供,运行着各种不同的操作系统和应用软件,整车OTA意味着所有相关的控制器都要在一次升级过程中完成软件版本的更新,因此升级的总时间和成功率是OTA的两大难点。而且为了保持软件升级的稳定性和安全性,车辆部分功能将被禁用,要求车辆处于熄火的状态,长时间的升级会影响用户体验。

为了提高整车OTA的稳定性、缩短升级时间,本文提出了一种基于整车电子电器架构的OTA设计方案,实现整车版本管理和整车软件升级。

2. 总体方案设计

整车OTA的功能是控制和执行车上各类控制器的软件升级,因此需要对所有关联控制器提出统一的升级要求和规范,并对升级过程进行集中控制。本方案遵循“集中控制、分而治之”的原则,实现了“两类对象、两个过程、四种角色”:

1)两类对象: 即升级对象分为2类,第一类是智能控制系统,基于操作系统具备自升级能力,如座舱域的车机、仪表等,驾驶域的自动驾驶控制器等;第二类是传统的控制器即ECU电控单元,没有操作系统而是由刷写上位机来完成软件升级。两类升级对象须遵循各自的技术要求:智能系统要求实现版本信息维护、文件存储、自升级以及升级异常处理等功能;传统的控制器要求满足UDS(汽车通用诊断服务)的刷写规范。升级对象分类的目的在于将车上众多的控制器按照其软件升级方式的不同进行分类管理,对同类的控制器提出一致的技术要求规范,以便于实现OTA升级对象管理的标准化。

2)两个过程: 即升级过程分为2个过程,第一个过程是下载部署过程,服务器将升级任务通知到车辆,车端从服务器端下载升级包到本地,这个过程可在车辆行驶中进行不会对用户产生影响;第二个过程是安装过程即“车端各个控制器执行软件升级”,这个过程需要保持车辆处于特定的状态如车速为零、发动机熄火等,所以不能正常用车。下载部署过程和安装过程中的执行对象、执行条件以及控制策略是不同的,将过程分段的目的在于实现OTA不同过程的差异化控制,能够对各种过程进行集中控制,并在一个模块中实现。

3)四种角色: 即功能划分为4个角色实现职责分离,第一个角色是OTA服务端(OTAServer)负责web管理平台、升级数据管理和升级文件存储[2];第二个角色是OTA客户端(OTAClient)完成车上所有控制器的版本收集,与服务端交互获取升级任务和上报升级状态,下载升级包,将升级包和升级信息分发到执行升级的控制器,负责人机交互功能;第三个角色是OTA主控模块(OTAMaster)检查整车的安装条件、保持安装状态、按照升级策略控制安装过程;第四个角色是OTA子控模块(SubMaster)保存升级包、完成所在控制器的升级功能,能够通过车内总线或者USB等其它的物理通道对其他控制器或者固件进行升级。

OTAClient、OTAMaster和SubMaster这三个模块运行在车端,基于整车电子电器架构被部署到不同的控制器中。角色划分的目的在于对功能进行模块化设计,便于在不同车型上实现复用,从而实现该OTA方案的平台化和可移植性。

基于上述的设计原则和设计思路,系统设计方案如图1所示:

图1 系统设计方案

在车端,下载部署过程,包括图1中的步骤1.1和步骤1.2,由OTAClient发起,先从OTAServer下载文件,再将升级信息和升级包分发到各个执行升级的SubMaster;安装过程包括图1中的步骤2.1和步骤2.2,由OTAMaster发起,进行安装控制,判断整车安装条件是否满足,维持整车安装状态,按照安装顺序向各个SubMaster发出安装命令;SubMaster分别执行具体的升级操作,完成自升级或者对其他控制器的刷写。各个SubMaster的升级可以独立执行,因此需要OTAMaster总体协调。

3. 详细设计

3.1 服务器端设计

服务器端,OTA Serve主要实现OTA数据的管理,为了支持整车升级,本方案设计了车型配置管理、整车版本管理、升级任务管理这三个功能。

1)每个车系需要设置车型配置组,一个组对应一个或多个车型配置,一个车型配置只能对应唯一的一个组。每个组需要配置所有控制器的软件集合,通过软件ID和控制器的软件保持对应关系。

2)整车版本的管理粒度为车型配置组,每个车型配置组的软件版本按整车大版本来进行管理,大版本是一个虚拟的版本,是车型配置组下的所有控制器软件版本的集合标识。

3)升级任务包括升级的控制器对象、安装策略、升级范围。新增任务时需要设置车系、车型配置组以及对应的目标整车版本。每个升级对象可设置其软件更新的方式、安装的时间和异常处理的上限次数。安装策略包括安装条件、安装顺序和软件版本依赖。a)安装条件包括:行车档位、电池电量范围、温度下限、电源档位等。在OTA管理平台设置可设置每次OTA的安装条件,并生成信息到升级任务中。b)安装顺序包括升级对象的并行或者串行升级顺序。在OTA管理平台设置SubMaster和升级对象的包含关系以及升级对象之间的安装依赖关系,在创建升级任务时根据上述关系自动生成升级任务的安装顺序。c)软件版本依赖包括多个关联组,关联组内的升级对象版本要支持同升同降。在OTA管理平台设置控制器之间的关联关系,创建升级任务时根据关联设置自动生成升级任务的关联组。

3.2 汽车端设计

3.2.1流程设计

在车端,包括下载部署过程和安装过程,这两个过程分别由不同的功能模块来执行,保证各个过程中有相同的控制主体和统一的控制流程。

OTAClient通常部署在车机或者T-BOX上,具有车联网功能、人机交互功能、文件存储和分发的功能[3]。OTAMaster通常部署在中心节点网关上,对升级过程进行控制和协调[4]。SubMaster会有多个,通常部署在有操作系统(android、qnx、linux等)的智能控制器上,如车机、仪表、智能驾驶控制器等。另外,网关负责传统控制器的刷写功能,也需要部署一个SubMaster模块。车端的架构如图2所示:

图2 车端的架构设计

1)下载部署过程,OTAClient将下载过程和分发过程进行同步处理,使两个过程可以并发执行,以缩短升级包下载部署的时间,同时减少对储存空间的需求。OTAClient根据硬件通道的不同,优先下载数据传输速率低的SubMaster节点的升级包,最后下载OTAClient所在的SubMaster节点的升级包;单个SubMaster的升级包下载完成就可以进行文件部署。如果在下载部署过程中,车辆熄火,则停止下载和部署;下次点火后,继续在断点处执行。整个过程可以在行车中执行,不影响用户用车。

2)安装过程,由OTAMaster集成控制,用户确认发起安装后,OTAMaster根据升级信息中安装条件,检测整车安装条件是否满足,发起安装后一直保持安装的状态,如电源档位、行车档位、整车OTA状态等。OTA Master依次向各个的SubMaster发送安装请求;收到安装请求,SubMaster各自执行升级,SubMaster之间可以进行并行升级。通常网关作为传统控制器的SubMaster,实现各个网段之间的并行刷写。

OTA Master按照升级任务中安装顺序执行,安装顺序由多个子任务组成,子任务之间串行执行,而子任务内的升级对象则是并行执行升级。如果控制器的安装顺序存在依赖,则需要把被依赖和依赖的控制器划分到不同的子任务中,并分配为先后的顺序。升级任务的安装总时间如公式(1)所示:

其中,t_n 为子任务n中的耗时最长的SubMaster的安装时间。

3.2.2协议设计

为了满足车端OTA过程中功能模块之间数据交互的,本方案中设计了两套通信协议,如图3所示。

图3 车端的通信协议

1)部署协议,主要在部署过程和人机交互过程中使用。协议采用的是客户端和服务端(C/S)的模式,OTAClient作为客户端,SubMaster和OTA Master作为服务端。物理的通道包括CANFD、以太网、USB等。部署协议的交互覆盖四个子过程。a)子过程1.1版本收集:OTAClient向各个SubMaster发出版本收集请求,SubMaster收集版本的范围包括其所部署的控制器的软件版本、以及所负责刷写的其他控制器或者控制升级的其他固件的软件版本。b)子过程1.2升级信息和升级包的分发:OTAClient下载完成后,要向各个Sub Master传输升级包,以及升级对象的信息。OTAClient向OTAMaster发送升级任务信息。c)子过程1.3发起安装请求:OTAClient根据人机交互的触发,发送安装请求到OTAMaster;如果支持升级取消,也通过该子过程发送请求。d)子过程1.4安装状态查询:OTAClient查询OTAMaster的安装条件检查及结果、安装执行的状态、安装进度和安装结果,用于人机交互界面的显示。

2)安装控制协议,主要是在安装过程中使用,通过诊断服务,借助诊断通道到达全车所有的控制器[5]。安装控制协议的交互覆盖了两个子过程分别是,子过程2.1安装控制:OTAMaster按照升级任务,向子任务中的各个SubMaster发出安装命令请求,查询安装的进度,SubMaster返回执行状态。子过程2.1回滚控制:当所有的子任务安装执行完成后,OTAMaster读取安装结果,判断是否有升级对象安装失败;并读取升级任务中的关联组新,如果升级失败的对象和其他升级对象是在一个关联组内,则向该组内其他升级对象的SubMaster发出回滚命令请求,查询回滚的进度,SubMaster返回执行状态。

4. 应用案例

按照以上的整车OTA设计,在某车型项目上开发整车OTA功能,如图4所示,部署升级功能模块和搭建升级通道。车机作为OTAClient,网关作为OTA Master,实现对座舱域、车身域、动力域、底盘域、自动驾驶域的控制器的OTA功能;覆盖了18个控制器,其中包括4个智能控制系统,14个传统控制器;部署了5个SubMaster节点,分别是车机、仪表、网关、自动驾驶控制器、驾驶辅助控制器。

图4 某项目整车OTA方案

在OTA管理平台配置车型信息和控制器的升级依赖关系,发布升级任务,选择对18个控制器,即所有升级对象进行升级,云端自动生成升级任务信息,其中的安装顺序如图5所示。

图5 某项目整车OTA安装顺序

按照图5的安装顺序,对车端OTA的过程进行记录,下载部署过程和安装过程的时间分别如表1和表2所示。从下载到安装一共需要44分钟,影响用户体验的升级时间主要是安装过程,用户需要等待升级完成的时间是28分钟。如果所有控制器都采用串行的升级顺序,安装过程的时间是77分钟。本方案用户等待升级时间明显缩短,相比串行升级时间降低63.6%,大幅提升了OTA的用户体验满意度。

表1 下载部署过程的时间

表2 安装过程的时间

如表2所示,安装过程的耗时瓶颈主要在CANFD1网段,如果在其他网段上适当增加控制器则不会影响总的时间。如果要缩短总时间,需要对CANFD1网段的控制器进行优化,优化方向主要是减少升级包大小、将传统控制器改为智能控制系统等。

5. 结论

本文提出的一种基于电子电器架构的整车OTA设计方案,实现了对升级对象的统一管理、对升级过程的集中控制、对升级功能的模块化设计。从试验的效果来看,通过OTA管理平台配置升级策略、明显缩短了升级时间,是一个可实施、可平台化的设计。本设计方案可应用于其他车型的整车OTA,解决了整车OTA控制器多、升级过程不可控、升级时间长和稳定性差等问题,形成了一套从云端到车端完整的持续迭代更新能力和智能网联汽车价值提升的新动力。

参考文献:

[1] 王栋梁, 汤利顺, 陈博, 等.智能网联汽车整车OTA功能设计研究[J]. 汽车技术, 2018(10):5

[2] 施庆国, 尚海立, 马婕, 等. 智能网联汽车的OTA升级方案[C]. 2018中国汽车工程学会年会论文集, 2018

[3] 袁九宇, 马江涛, 程琳, 等. 车辆OTA系统的虚拟仿真测试平台[J]. 汽车实用技术, 2020(6):3

[4] Mengran Xue, Wei Wang. Security Concepts for the Dynamics of Autonomous Vehicle Networks [J]. Automatica, 2014, 50(3):852-857

[5] Zhong Sheng, Zhang Yuan. How to Select Optimal Gatewayin Multi-Domain Wireless Networks: Alternative Solutions without Learning [J]. IEEE Transactions on Wireless Com⁃munications, 2013, 12(11):5620-5630.

相关问答

汽车 蓄电池的功能作用 - 汽车维修 技术

[回答]汽车蓄电池作为车用直流电源,是汽车必不可少的一部分,有下面这些功能作用:①启动发动机时,给启动机提供强大的启动电流(一般高达200A以上)。②当汽...

怎么写 电子技术 毕业论文 前言范文? - 懂得

随着全球经济一体化的逐步深入和中国加入wto,企业间的竞争越来越激烈,竞争的手段也由传统的原材料和人工成本降低转向物流配送和供应链管理水平的高...

电子 论文 怎么弄?

就是在电脑上写留下电子文档可以邮箱发送。就是在电脑上写留下电子文档可以邮箱发送。

如何看待 电子 科大的钟永松(2007年发表)和上海交大的赵杰毕业 论文 (2008年发表)一字不差?

但是因为我自己去年没有考上985,所以说我对985还是有一点点的崇拜在里面的。尤其电子科技大学和上海交通大学这两个工科很强的学校。但最近的这些事情,让我...

职称晋升 论文电子 期刊行不行?

不可以,再正规也不行,评职称论文满足两点,第一知网收录,第二,公开发行纸质期刊,而不是电子期刊,那些所谓的电子期刊纸质版,都是杂志社私自印刷的!根本没...不...

怎么写 电子技术 毕业论文 前言范文? - hgIhxCbQPV 的回答 - 懂得

虽然物流概念在20世纪80年代初就从国外引入国,并建立了一批符合现代物流要求的企业,但是国现代物流的发展却是90年代后期才开始的。近年来,从国家...

电子 商务的 论文 怎么写?

电子商务论文的写作需要遵循一定的步骤和方法,以下是一些建议:1.确定研究方向:首先需要确定自己的研究方向,选择一个感兴趣的电子商务领域,例如电子商务...

论文 : 电子 商务在中国农村的发展应该怎么写?

先构好框架,然后分点叙述,剖析一下中国农村的现状,清楚阐述电子商务的概念,流程,农村农产品商品化的过程,我国农村本身存在的一些问题,再一个就是农村的物...临...

电子 信息毕业 论文 应该选哪些题目好写的?

可以选择现在比较前沿的东西:人工智能,物联网,大数据等。也可以选择比较经典的东西:单片机设计,嵌入式。可以选择现在比较前沿的东西:人工智能,物联网,大数...

【period-doubled是什么在 电子 类的 论文 中看到的inaperiod-do...

[最佳回答]“翻了一番”的意思.比如:heoverallnumberofdivorcesforthesameperioddoubledfrom111877to225635同期,离婚总数量翻...