透射电镜电子衍射的应用 透射电子显微镜(TEM)电子衍射技术在晶体结构分析中的三大应用

小编 2025-04-06 电子头条 23 0

透射电子显微镜(TEM)电子衍射技术在晶体结构分析中的三大应用

晶体材料由于具有有序结构而表现出许多独特的性质,成为特定的功能材料,制成器件广泛应用于微电子、自动控制、计算通讯、生物医疗等领域。功能晶体材料微观结构决定了材料的性质,所以解析材料微观结构一直以来都是科研的重点之一。

研究晶体结构通常的方法是 X-射线单晶衍射技术(SXRD, Single crystal X-ray diffraction)和 X-射线粉末衍射技术(PXRD, Powder X-ray diffraction),科研人员应用此两项技术已经解析了数目非常庞大的晶体结构。然而 X-射线衍射技术对于解析的晶体大小有限制,即使是应用同步辐射光源也只能解析大于微米级的晶体,无法对纳米晶体的结构进行解析。

与X-射线相比,电子束因其波长较短和衍射较强,电子衍射在纳米晶体结构分析中的应用显得尤为重要,透射电镜既能高分辨成像纳米晶体,又能电子衍射分析纳米晶体材料,已经成为纳米晶体材料必不可少的一种研究手段,其中包括纳米结构生长方向的判定、对纳米晶体晶胞参数和原子排列结构进行了解析等等。

判断已知纳米结构的生长方向

在晶体结构的研究中,许多时候都要对它们的优势生长面和方向进行判断,特别是纳米线和纳米带的生长。晶体的电子衍射图在二维倒易平面上被放大,而在透射电镜上可以获得形貌,它们分别对应于倒易空间像和正空间像,正空间的一个晶面族(hkl)可用倒空间的一个倒易点 hkl 来表示,正空间的一个晶带[uvw]可用倒空间的一个倒易面(uvw)*来表示,对应关系如图 1 所示,在透射电镜中,电子束沿晶带轴的反方向入射到晶体中,受晶面族(h1k1l1)的衍射产生衍射斑(h1k1l1),那么衍射斑与透射斑的连线垂直于晶面族(h1k1l1),据此可判断晶体的优势生长面及生长方向。

具体方法如下:先拍形貌像并对相同部位进行电子衍射,从形貌像中寻找优势生长面并和电子衍射花样进行比较,寻找与透射斑连线在该晶面上的透射斑并对其校准,依据晶面指数转换生长方向。

如图 2 所示是判断一维纳米线的生长方向,首先对电子衍射进行标定,纳米线的优势生长面为与纳米线垂直的面,在电子衍射图上找出与此面垂直的透射斑与衍射斑的连线,确定优势生长面是(0-11)面,由于该物质是四方晶系,根据四方晶系的正倒易转换矩阵,将(0-11)面转换为生长方向[0-12]。

图 1 晶带正空间与倒空间对应关系图

图 2 某金属氧化物一维纳米线的透射电镜及电子衍射图

手动解析纳米晶体的晶体结构参数

如上所述,电子衍射图代表晶带轴倒易点阵,若允许晶体沿特定晶带轴转动,则仅能获得晶体结构的二维信息,得到一系列电子衍射花样可得若干晶带轴倒易点阵并可基于这些电子衍射花样及倾转角重建三维倒易点阵,由此可判断出未知结构所归属的晶系及其晶胞参数。

特定晶带轴一般选择最密排的点,有可能对应晶体的单胞参数,另外,在旋转晶体时是通过透射电镜的双倾台在两个相互垂直的方向上进行旋转,使晶体从一个晶带轴到另外一个晶带轴,最终的旋转角由两个方向的转角合成。

例如,利用该方法测定了实验室合成氧化锌纳米线晶体结构,先获得了正带轴上一幅电子衍射花样而没有倾转,再转动晶体而密排点不动,依次转到另外三个正带轴如图 3 所示,并通过 X, Y 倾转的角度合成出空间旋转角;如图 4 所示,以密排点阵为横坐标,分别旋转相应的角度做线,然后分别量出密排点阵与相邻点阵之间的倒易距离,据此距离在对应的线上画出对应的倒易点阵点,根据对称性画出其他点阵点,即重构出了氧化锌的三维倒易点阵;由倒易点阵的六次对称性可判断此纳米线为六方晶系,通过进一步计算得到其晶胞参数为 a=3Å, b=3Å,c=5Å, α=90º, β=90º,γ=120º。

图 3 氧化锌纳米线不同晶带轴的电子衍射花

图 4 氧化锌纳米线三维倒易空间的重构

这种方法需人工倾转试样,两方向相互配合转至正带轴上,转动时试样要回位,故要求操作者具有充分的工作经验,而需要耗费一段时间,对有机晶体等不耐电子束辐照的试样难以获得足够数量的正带轴电子衍射花样。此外,受人工获得衍射花样有限和存在电子衍射多重散射等动力学效应、作用,原子排列结构不能解析,一定要象X-射线单晶衍射仪一样能在采集大量衍射数据和合成自动标定的情况下,实现试样的自动倾转和原子结构排列信息的获取。

自动解析未知纳米晶体的原子结构

近年来,以瑞典斯德哥尔摩大学教授邹晓东为代表的科学家开发出一种自动采集电子衍射花样和分析纳米材料原子排列情况的方法,这几种方法均削弱了电子衍射的动力学效应,使电子衍射能够象X-射线单晶衍射那样解析晶体中原子排列结构。

这些方法主要包括旋进电子衍射(PED, Procession electron diffraction)及电子衍射三维重构(ADT, Automated diffraction tomograpHy; RED, Rotation electron diffraction),已解析出沸石、金属有机骨架(MOFs, Metal-organic frameworks )、共价有机骨架(COFs, Covalent-organic frameworks )等多种纳米材料的原子排列结构。旋进电子衍射 PED 是采用类似 X-射线衍射中的旋进技术,只是试样不偏不倚,而把电子束以小角度偏斜,沿着和透射电镜光轴共轴的锥面对试样表面进行扫描,其间利用软件对每张电子衍射花样进行自动采集,并对其进行合并分析,这能够极大地降低多重散射,从而能够极大地降低动力学效应,使空间群的识别变得比较容易,通过衍射强度分析来揭示纳米材料原子排列结构。

已用这种方法解析了沸石如 MCM-22, SSZ-48, ITQ-40 等的晶体结构,如图 5 为 SSZ-48 三个晶带轴的电子衍射及由此得出的结构模型。现在,已有商业化的控制电子束旋进的硬件及配套的采集、分析衍射图的软件。

图 5 SSZ-48 三个晶带轴的电子衍射及结构模型

图 6 由 RED 重构的 ZIF-7 三维倒易空间点阵及经过精修后的结构模型

PED 技术通常是沿着晶体的某个晶带轴旋进,要求转正晶体的带轴,而电子衍射的三维重构技术 ADT 和 RED 是使样品进行大角度范围的倾转(通常﹣30º到 +30º ),无需转正晶体的带轴,可沿任意带轴进行数据采集,因此比 PED 技术更有优势。比如由邹晓东教授团队开发的 RED 技术是在控制测角台即样品旋转的同时,控制电子束的偏转,通常样品每转 2º-3º,电子束同时倾转 0.1º-0.4º,这样避免了动力学效应,应用软件在不到一个小时之内可采集上千张电子衍射图,之后再进行谱图融合、单胞确定、指数标定、强度提取等数据处理,之后可应用与 X-射线单晶解析相同的方法进行结构解析及精修,如图 6 为应用 RED 技术解析的一种 MOFs (ZIF-7)的结构。

由此可见,应用RED这种技术可将透射电镜发展成为能够解析纳米晶体未知结构的电子衍射仪,预计将在纳米晶体结构研究方面发挥非常重要作用。当然现在电子衍射解析晶体结构的主要问题之一就是电子束破坏试样,而破坏可以用低温等来削弱。

「教程」 透射电镜电子衍射花样的标定与分析

单晶电子衍射谱实际上是倒空间中的一个零层倒易面,对它标定时,只考虑相机常数已知的情况。因为对于现在的电镜,相机长度可以直接从电镜和底片上读出来,虽然这个值与实际上会有差别,但这个差别不大。之所以要在多晶衍射时考虑相机常数未知的情况,是因为我们经常要用已知的粉末多晶样品(如金)去校正相机常数。相机常数未知时,单晶电子衍射花样标定后可能不好验算,因此除非是已知的相,否则标定非常容易出错。

A、晶体结构已知的单晶电子衍射花样的标定

1.标准花样对照法

这种方法只适用于简单立方、面心立方、体心立方和密排六方的低指数晶带轴。因为这些晶系的低指数晶带的标准花样可以在有的书上查到,如果得到的衍射花样跟标准花样完全一致,则基本上可以确定该花样。不过需要注意的是,通过标准花样对照法标定的花样,标定完了以后,一定要验算它的相机常数,因为标准花样给出的只是花样的比例关系,而对于有的物相,某些较高指数花样在形状上与某些低指数花样十分相似,但是由两者算出来的相机常数会相差很远。所以即使知道该晶体的结构,在对比时仍然要小心。

2.尝试-校核法

a)量出透射斑到各衍射斑的矢径的长度,利用相机常数算出与各衍射斑对应的晶面间距,确定其可能的晶面指数;

b)首先确定矢径最小的衍射斑的晶面指数,然后用尝试的办法选择矢径次小的衍射斑的晶面指数,两个晶面之间夹角应该自恰;

c)然后用两个矢径相加减,得到其它衍射斑的晶面指数,看它们的晶面间距和彼此之间的夹角是否自恰,如果不能自恰,则改变第二个矢径的晶面指数,直到它们全部自恰为止;

d)由衍射花样中任意两个不共线的晶面叉乘,即可得出衍射花样的晶带轴指数。

尝试-校核法应该注意的问题

对于立方晶系、四方晶系和正交晶系来说,它们的晶面间距可以用其指数的平方来表示,因此对于间距一定的晶面来说,其指数的正负号可以随意。但是在标定时,只有第一个矢径是可以随意取值的,从第二个开始,就要考虑它们之间角度的自恰;同时还要考虑它们的矢量相加减以后,得到的晶面指数也要与其晶面间距自恰,同时角度也要保证自恰。

另外晶系的对称性越高,h,k,l之间互换而不会改变面间距的机会越大,选择的范围就会更大,标定时就应该更加小心。

3.查表法(比值法)-1

a)选择一个由斑点构成的平行四边形,要求这个平行四边形是由最短的两个邻边组成,测量透射斑到衍射斑的最小矢径和次小矢径的长度和两个矢径之间的夹角r1, r2,θ;

b)根据矢径长度的比值r2/r1 和θ角查表,在与此物相对应的表格中查找与其匹配的晶带花样;

c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);

d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

3.查表法(比值法)-2

a)测量透射斑到衍射斑的最小、次小和第三小矢径的长度r1, r2, r3;

b)根据矢径长度的比值r2/r1 和r3/r1查表,在与此物相对应的表格中查找与其匹配的晶带花样;

c)按表上的结果标定电子衍射花样,算出与衍射斑点对应的晶面的面间距,将其与矢径的长度相乘看它等不等于相机常数(这一步非常重要);

d)由衍射花样中任意两个不共线的晶面叉乘,验算晶带轴是否正确。

之所以有两种不同的查表法,是因为有两种不同的表格,它们的查询方法和原理基本上是一致的。

查表法应该注意的问题:

首先查表法标定完了以后一定要用相机常数来验算,因为即使物相是已知的,同一种物相中也会有形状基本一样的花样,但它们不可能是由相同的晶面构成,因而算出来的相机常数也不可能相同;

由两个矢径和一个夹角来查表时,有的表总是取锐角,这样有好处,但查表时要注意你的花样也许和表上的晶带轴反号,所以标定完了之后,一定要用不共线的两矢量叉乘来验算;如果夹角不是只取锐角,一般不存在这个问题;

如果从衍射花样上得到的值在表上查不到,则要注意与你的夹角互补的结果,因为晶带轴的正反向在表中往往只有一个值。

超点阵花样

当晶体是由两种或者两种以上的原子或者离子构成时,对于晶体中的任何一种原子或者离子,如果它能够随机地占据点阵中的任何一个阵点,则我们称该晶体是无序的;如果晶体中不同的原子或者离子只能占据特定的阵点,则该晶体是有序的。

晶体从无序相向有序相转变以后,在产生有序的方向会出现平移周期的加倍,从而引起平移群的改变。由此引发的最显著的特点是在某些方向出现与平移对称对应的超点阵斑点。

上图即是CuAu3无序和有序的模型和对应的电子衍射花样。其中图a是CuAu3无序时的晶体结构模型,而图b是有序时的晶体结构模型;图c是与无序对应的电子衍射花样,而图d则是与有序对应的超点阵电子衍射花样。

上图是CsCl无序和有序的模型和对应的电子衍射花样。其中图a是CsCl无序时的晶体结构模型,而图b是有序时的晶体结构模型;图c是与无序对应的电子衍射花样示意图,而图d则是与有序对应的超点阵电子衍射花样示意图。

上图是超点阵花样的一些实例,这些花样是从一种沿[111]方向具有六倍周期的复杂有序钙钛矿相中得到的。图a是沿[010]方向2倍周期有序的超点阵电子衍射花样,图b是沿[101]方向2倍周期有序的超点阵电子衍射花样,图c是沿[11-1]方向2倍周期有序的超点阵电子衍射花样,而图d则是沿[111]方向6倍周期有序的电子衍射花样。

孪晶电子衍射花样

所谓孪晶,通常指按一定取向关系并排生长在一起的同一物质的两个晶粒。从晶体学上讲,可以把孪晶晶体的一部分看成另一部分以某一低指数晶面为对称面的镜像;或以某一低指数晶向为旋转轴旋转一定的角度。

孪晶的分类:

1、按晶体学特点:反映孪晶和旋转孪晶;

2、按形成方式:生长孪晶和形变孪晶;

3、按孪晶形态:二次孪晶和高次孪晶。

上图中图a和b是CaMgSi相中的(102)孪晶在不同位向下的孪晶花样,图c是CaMgSi相中另外一种孪晶的电子衍射花样,其孪晶面是(011)面;图d是镁中常见的(10-12)孪晶花样。

二次衍射

在电子束穿行晶体的过程中,会产生较强的衍射束,它又可以作为入射束,在晶体中产生再次衍射,称为二次衍射。二次衍射形成的新的附加斑点称作二次衍射斑。二次衍射很强时,还可以再行衍射,产生多次衍射。

产生二次衍射的条件:

1、晶体足够厚;

2、衍射束要有足够的强度。

二次衍射花样形成的示意图

上图是二次衍射中出现多余衍射斑点的两种不同,其中图a是在镁钙合金中得到的的电子衍射花样,图中本来只存在两套花样,分别是镁的[-1100]晶带轴电子衍射花样和Mg2Ca相的[3-302]晶带轴花样。而花样中出现的很多卫星斑是由于二次衍射,通过Mg2Ca相的(1-103)斑点与Mg的(000-2)斑点之间存在的差矢平移造成的。图b和图c是一种有序钙钛矿相中沿[010]p方向得到的电子衍射花样,其中图b是在较厚的地方得到,而图c则是在很薄的地方得到。在较薄的地方,由于不存在动力学效应,可以清楚地看到花样中存在相当多消光的斑点,但在较厚的地方,由于动力学效应,出现二次衍射的矢量平移,使得本来应该消光的斑点变得看起来不消光了。

典型的例子:硅的电子衍射花样,图中红圈内的衍射应该是系统消光的。但(200)可以是(111)衍射电子再发生(1-1-1)衍射的总的效果。这一现象被称为二次衍射或动力学衍射。同理,消光的(222)也可以由两次(111)来产生。(200)也可以通过(111)+(111)+(0-2-2)来产生,只是这种多次衍射的几率更低一些罢了。

电子衍射图谱标定

来源:材料十

「干货」材料裂纹与断口分析方法

「材料学堂」如何从TEM进行区分单晶、多晶和非晶

相关问答

透射电镜 图像的衬度_作业帮

[最佳回答]象衬度定义:象衬度是图象上不同区域间明暗程度的差别.由于图像上不同区域间存在明暗程度的差别即衬度的存在,才使得我们能观察到各种具体的图像.只...

怎么做傅里叶变换及标定,我做的 透射电镜 图像,但是从图像上...

[最佳回答]你去做的时候目的是想得到什么信息啊?TEM可以得到很多信息的,成分,结构等等,看你要什么了.还要看你得到的图像是什么,有各种拍摄方法,所得到的图含...

透射电子 显微镜的功能有哪些呢?

stem是既有透射电子显微镜又有扫描电子显微镜的显微镜。象sem一样,stem用电子束在样品的表面扫描,但又象tem,通过电子穿透样品成像。stem能够获得tem所不能获...

透射电镜的 原理?

透射电镜是一种利用电子束穿透样品并形成显微图像的仪器。其原理基于电子的波粒二象性,电子束通过样品时会与样品中的原子或分子发生相互作用,产生散射。透射...

透射电镜 利用什么信号?

透射电镜利用的是透射电子的信号。透射电镜是一种高分辨率的显微镜,可以对材料的微观结构进行成像和分析。透射电镜的工作原理是将电子束聚焦到样品表面,然后...

TEM的 应用 ?

TEM(透射电子显微镜)在材料科研领域用途广泛。研究人员可以利用吸收衬度像对样品进行一般的形貌观察,而对于确定材料的物相、晶系等,则可以利用电子衍射等衍...

透射电镜 中聚光镜光阑的作用?

小...在双聚光镜系统中,该光阑装在第二聚光镜下方。作用:限制照明孔径角。②物镜光阑。安装在物镜后焦面。作用:提高像衬度;减小孔径角,从而减小像差;进行暗...

透射电镜衍射 图像的实质?

透射电镜,全称透射电子显微镜。是利用高能电子束充当照明光源而进行放大成像的大型显微分析设备,透射电镜是一种具有高分辨率、高放大倍数的电子光学仪器,被广...

透射电镜 观察纳米颗粒粒度的优缺点?

TEM:即透射电子显微镜,简称透射电镜,是把经加速和聚集的电子束投射到常薄的样电子与样品中的原子碰撞而改变方向,从而产生立体角散射。散射角的大小与样品的密...

透射电镜的 主要条件?

透射电镜(Tem)的主要条件包括以下几个方面:1.高真空环境:为了避免电子束与气体分子的碰撞散射,透射电镜操作通常在真空或者极低压条件下进行。2.高电压加...